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Abstract 

 Past research proposed that it is possible to forecast cargo demand using time series 

models and that there exists potential cost savings in the way that Civilian Reserve Air Fleet 

(CRAF) is used for cargo airlift.   United States Transportation Command (USTRANSCOM) 

performs annual "fixed-buys" of CRAF to support airlift needs.  Forecasted cargo demand would 

allow for reasonably accurate cargo projections vs. the current expected value estimation.  

Accurate forecasting allows for greater "fixed-buys," further incentivizing CRAF airlines as well 

as reducing the number of additional aircraft purchases during the quarterly and monthly buys.  

Multiple forecasting models are constructed and the results compared.  A Monte Carlo 

simulation using a discrete pallet destinations distribution and a discrete pallet port arrival date 

distribution (based on historical data) outputs a month of projected pallet weights (with date and 

destination) that are equivalent to the forecasted cargo amount.  The simulated pallets are then 

used in a heuristic cargo loading algorithm.  The loading algorithm places cargo onto available 

aircraft (based on real schedules) given the date and the destination and outputs statistics based 

on the aircraft ton and pallet utilization as well as number of aircraft types used and the total cost 

of the projected airlift schedule.  A technical approach to the operational planning of cargo airlift 

could provide significant cost savings or could provide an alternative planning approach 

changing the future of USTRANSCOM operations. 
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OPERATIONAL PLANNING OF CHANNEL AIRLIFT MISSIONS USING 
FORECASTED DEMAND 

I. Introduction 

Background 

The United States Transportation Command (USTRANSCOM) is located at Scott Air 

Force Base, IL and is the single manager of the U.S. global defense transportation system (DTS).  

USTRANSCOM is composed of three component commands, the Army’s Military Surface 

Deployment and Distribution Command, the Navy’s Military Sealift Command, and the Air 

Force’s Air Mobility Command (AMC) (USTRANSCOM History, 2012).  AMC is also located 

at Scott AFB and provides aerial refueling, medical evacuation, passenger transportation, and 

cargo delivery anywhere around the world.  AMC’s passenger transportation and cargo delivery 

capabilities are supported by the Civil Reserve Air Fleet (CRAF) program which allows the 

Department of Defense (DOD) to contract aircraft from civilian airlines to meet national 

objectives.  One of the more important aspects of the CRAF program is its ability to provide 

additional commercial airlift aircraft in times of national emergencies.   

Within AMC is the 618th Tanker Airlift Control Center (TACC) which is responsible for 

planning, scheduling, and directing more than 1,300 mobility aircraft for a number of operations 

to include strategic airlift.  The 618th TACC includes the Global Channel Operations Directorate 

(XOG) which manages worldwide strategic airlift operations and employs military aircraft such 

as the C-5 Galaxy and the C-17 Globemaster III, along with civilian aircraft to fulfill airlift 

requirements (618th Tanker Airlift Control Center, 2008).    

AMC and TACC are responsible for organizing U.S. tanker, airlift, and inter-theater 

aeromedical evacuation capabilities worldwide.  Airlift during the Global War on Terror 
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(GWOT) has significantly evolved since Desert Storm, causing a direct increase in the demand 

on the available air assets. Airlift historically supports forces from behind rather than acting as a 

frontline operation (Second Line of Defense, 2011).  However, with altered deployments, airlift 

has received much more forward pressure than ever before.  Within in the last ten years, a heavy 

commitment to Central Command to airlift all of the necessary equipment, machinery, 

weaponry, and rations to the deployed troops has become the norm.  Unfortunately, there are not 

enough organic aircraft available to airlift everything that is needed.  A crucial element of TACC 

has become its ability to leverage commercial assets or CRAF.  CRAF is utilized for channel 

missions or regularly scheduled flights that fly fixed routes on a predetermined schedule.  The 

CRAF schedule is generated from USTRANSCOM airlift requirements based on historical data.  

As of now, there is no mathematical projection of the airlift needs for the future (Second Line of 

Defense, 2011).  The number of organic aircraft that are used for airlift is dependent on the 

number that are not dedicated to other missions and that are in good condition to fly.  These 

organic aircraft are then used for either military missions or to carry outsized cargo that cannot 

fit in a civilian aircraft.  TACC then augments the organic forces with the civilian contract 

charters.  As of 2011, 80% of airlift needs were met by commercial carriers (Second Line of 

Defense, 2011).   

Initially born during World War II, CRAF was officially created by executive order in 

1951.  The creation allowed for the nation to have a contingency plan to meet airlift requirements 

in times of need (emergencies or wartime) when airlift exceeded the capabilities of military 

aircraft fleet (Knight & Bolkcom, 2008).  The current relationship between the military and the 

civilian airline industry was made official in 1987 by President Ronald Reagan’s National Airlift 

Policy.  The policy stated that in order to protect national security interests in a wartime 
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environment, the military and the civilian airlift would be interdependent in meeting wartime 

airlift requirements.   An important feature of the CRAF program is that it is still voluntary for 

airlines to participate.   Fortunately for the U.S. military, the incentive program is strong enough 

to maintain a relationship with 32 airlines (Michael W. Grismer, 2011). 

Although CRAF has proven itself invaluable to the military’s airlift needs, the fact 

remains that the program is very expensive (Michael W. Grismer, 2011).  The expense is 

necessary for the most part, but with the current economic crisis and the need to cut costs, the 

CRAF program presents an area where large savings are feasible.  The key to achieving cost 

savings is a more technical approach to the planning that already occurs when purchasing 

civilian aircraft for our future airlift needs.     

To bring the cost of CRAF into perspective, since September 11, 2001 (9/11) the 

Department of Defense (DoD) exceeds $3 billion per year in CRAF costs when the DOD only 

allocates $2.5 billion each year for the CRAF program (House of Representative Hearing, 111 

Congress, 2009).  While this allocation is an enormous amount of money, the cost for the 

military to build up and maintain the same number and capacity of aircraft over the life of the 

program in inflation-adjusted dollars is possibly $128 billion (House of Representative Hearing, 

111 Congress, 2009).  A new 747-8 costs approximately $180 million for one plane and while 

we reserve many different sized aircraft, we still request approximately 1100 civilian aircraft a 

year (House of Representative Hearing, 111 Congress, 2009).  It is quite easy to imagine how the 

costs add up if the DOD were to replicate the necessary inventory number as organic military 

aircraft and provide all of the additional support necessary.   

There do not seem to be any documents that firmly state what the cost of a particular type 

of civilian aircraft is to fly for the CRAF program.  For this study, previous estimates from past 
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studies will be used (Lindstrom, 2012).  The Boeing 747 is one of the most common CRAF 

aircraft, and the estimated cost of contracted airlift from Dover AFB to Bagram, Afghanistan is 

$460,000.  Let us say that there are two 747s contracted to fly on the same day to the same 

location, but there is only enough cargo to fill one plane.  The options are to fly both planes 

regardless if one is full or not, or to fly one and cancel the second.  Many people would probably 

think if a plane is already purchased, then why would one want to cancel it?  This is the school of 

thought that TACC has adopted and applies in their methodology.  The issue is it is cheaper to 

cancel an aircraft than to fly it.  To think of the cancellation cost as a scheduling fee provides a 

different perspective to the example.  The DOD has paid $100,000 per 747 to secure the aircraft 

to fly a military mission on that day of the month and will pay an additional $360,000 to actually 

fly the aircraft on the scheduled day.  The DOD will pay $200,000 total, but will only pay the 

additional cost $720,000 if both aircraft are flown.  If one flight is cancelled, then both 

reservations fees are still paid, but there is only one $360,000 payment ($100,000 + $100,000 + 

$360,000 = $560,000).  The $560,000 is significantly less than the full $920,000.   

A new planning methodology suggesting that flights be cancelled if a minimum cargo 

weight is not met would contribute to cost savings.  Often times, the main goal is to shorten port 

hold times, or the time until cargo departs the base.  Cancelling flights may cause some port hold 

times to increase since the cargo would wait until enough cargo arrived for the plane to meet the 

minimum weight requirement.  This study will show that the port hold times will not be 

significantly affected and cargo will still depart in a timely manner.  The identification of the 

issue with cancellations and the possible savings involved led to a number of studies, in turn 

providing the foundation for this thesis.  This led to pointing out the main problem, finding a 

methodology to predict the amount of cargo that will be freighted.  The annual buy is based on 
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the predicted amount of freight tonnage.  If this amount can accurately be projected for a full 

year, it may resolve over-scheduling or under-scheduling contracts.  Since intermediate buys are 

then completed quarterly and monthly, the unknown surges of cargo will also be included in 

short term forecasts.      

Problem Statement 

Cargo demand changes frequently and rapidly in a wartime environment.  It is very 

difficult to specify twelve months in advance the number of aircraft one would need to airlift a 

hypothetical number of cargo tons.  Cargo demand is dependent on a number of factors such as 

the timeframe of the war, the set up of the forward operating bases, and whether or not U.S. 

troops are surging.  Current demand is the expected value from previous years (Second Line of 

Defense, 2011).  If planners are able to forecast demand then it is also possible to simulate and 

optimize the number of commercial and organic assets needed to lift the cargo and provide a 

rough schedule as well.   

An additional problem is the cost of flying unnecessary aircraft.  The cost of cancelling a 

CRAF is significantly less than the cost of flying the aircraft, meaning it is possible to save 

money just by cancelling the flight.  If cancellations are viewed as sunk reservation costs, 

unrelated to the additional cost of flying, then it is easier to envision cost savings by flying the 

least amount of aircraft as possible.  Most savings are still generated by the benefit of accurate 

predictions and only scheduling what is actually needed.   

Objectives 

The primary objective is to examine the effect of advanced mathematical modeling on the 

operational planning and scheduling of CRAF aircraft.  The effects, on both cost and schedule, of 
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optimizing the number of the aircraft available will be quantified and analyzed in a number of 

scenarios providing a detailed look at the solution.   

Hypothesis 

The hypothesis of this research is two-fold.  First, current estimates of cargo demand for 

future years demand are only moderately effective and an advanced mathematical model would 

provide more accurate upfront purchase numbers and less underutilized CRAF purchases.  

Second, a simulation that optimizes and provides an overall average for the allocation of the 

cargo demand and the optimal airframe needs can realize further gains in the accuracy of the 

purchase and ensure that airlift is being used to the DOD’s and military’s advantage.      

Assumptions 

 There are not many assumptions necessary in moving forward with solutions for this 

problem.  The problem is handled in a way to provide an analysis of alternatives to the decision 

maker and to include sensitivity analysis as well in order to cover as many uncertainties as 

possible in the problem.  The main assumption to be addressed comes when using Boots on the 

Ground (BOG) as an input in the forecasting models.  All forecasts are based off of 98,000 

troops being present each month in Afghanistan for all of FY11.  This estimate is provided by 

congressional estimates for the Global War on Terror (Belasco, 2011).   

 The simulation uses peacetime aircraft load planning factors to replicate real world 

planning.  CRAF is currently inactive and planning occurs at peacetime requirements so the 

allowable cabin loads (ACLs) are set to a lower value (Mobility, 2012).  The aircraft are capable 

of carrying greater capacities, but those allowances are to be considered in wartime environment.  

Figure 1 provides a quick look at the assumed ACLs and number of pallet positions available on 
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the organic and civilian transport aircraft.  These parameters are the basis of the simulation and 

any comparison statistics that occur later on.   

 
Figure 1 Aircraft Payload During Peacetime Planning (Air Mobility Planning Factor, 2011) 

Limitations 

This research is limited to the specified Area of Responsibility (AOR) of Afghanistan 

since U.S. forces have been withdrawn from Iraq.  Further limiting the analysis is the focus on 

Dover AFB, DE.  There are other ports that operate in the same nature, but the large majority of 

cargo shipments to the AOR depart from Dover AFB due to its location on the East Cost as well 

as its primary mission being large scale airlift.   

There are limitations in any forecast due to the type of information used and the type of 

problem.  With this problem, only monthly data is being considered due to having limited 

information on additional inputs.  The monthly data is only available starting in 2005 through 

2011, which limits the potential data points to 81 observations.  12 of these points are withheld 
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for validation further reducing the series to 69 observations.  This is a feasible set of data points, 

but it may have been easier to work with a larger data set.   

The last limitation is the original data set, or the Global Air Transportation Execution 

System (GATES) data that is used for the problem.  It is possible that the parsing process to be 

described in Chapter 3 does not include all available information.  This is due to limited 

knowledge and experience with aircraft mission codes and pallet IDs.   

Implications 

Planning ahead is always beneficial, but in this case, planning ahead can reduce the cost 

of the CRAF program to the DOD.  This study will show that there are more accurate ways to 

predict cargo demand that are still easily implemented.  The benefit of accurate predictions at 

each purchase stage is tremendous.  There are abundant cost savings by scheduling aircraft to fit 

the actual demand versus scheduling aircraft based on historical averages.  The analysis in 

Chapter 4 will show that it is possible to reduce the number of planes flown in a month and 

better utilize the planes provided to provide significant cost savings when compared to planning 

methods in the past.   
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II. Literature Review 

This chapter discusses the usefulness of CRAF so the reader can gain an understanding of 

what the program provides and why airlift schedules currently exist as they are.  There is also a 

discussion of forecasting techniques and how they are selected and forecasting with air cargo 

demand.  Using forms of regression and time series modeling is not foreign to the Department of 

Defense (DOD) or the United States Air Force (USAF).  There have been multiple research 

papers written regarding military demand and airlift forecasting in a wartime environment, but 

there do not seem to be any papers or articles presented in popular literature about the combined 

topics.  The literature review presented below, provides a brief overview of the main topics and 

the combined application will be presented in later chapters.   

CRAF Program 

As highlighted earlier, in order to meet wartime needs, the DOD supplements its organic 

military aircraft with commercial carriers through the CRAF program.  The great benefit of the 

CRAF program and one of the main reasons why it is still so prevalent in today’s wartime 

environment is that it minimizes the cost to the government by guaranteeing aircraft availability 

during a surge without the added cost of maintaining organic capabilities.  A general 

understanding of the program and its benefits and drawbacks may be necessary to derive further 

value from this study.  The DOD spends billions of dollars annually to make substantial use of 

participating carriers.  Participating carriers must make their aircraft and aircrews available on 

short notice, with some of the suddenness mitigated through two different types of business 

purchases known as a “fixed buy” and an “expansion buy.”  The “fixed buy” requires that the 

DOD submit/prepay for a percentage of their airlift services upfront for the coming year, thus 

signing a one-year contract.  All additional requirements or additional airlift services are 
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purchased at multiple points within the year during an “expansion buy.”  The “fixed buy” is 

guaranteed payment a year in advance and therefore was a strong incentive for CRAF partners to 

continue participating in the program.  The benefit of the “fixed buy” for the DOD is to ensure 

that routine missions to transport people and cargo to overseas stations are already accounted for 

(Arthur, 2007). 

 Since the beginning of the wars in Iraq and Afghanistan, the fixed buy has averaged about 

20 percent of CRAF business.  It was foreseen that “expansion buys” would increase due to 

deployments closer to areas of operation.  What was not predicted were the large increases in the 

cargo being airlifted overseas and how the DOD could have decreased the “expansion buys” by 

looking forward.  In 2007, it was proposed that the DOD provide more guaranteed buys based on 

expected requirements (Arthur, 2007). 

A common question that has arisen throughout the years is “Why doesn’t the military 

purchase their own aircraft?”  The CRAF program is by no means free; the DOD pays rates 

based on weighted average carrier costs.  This minimal cost was approximately $1.5 billion a 

year during Desert Storm and is much greater now.  The cost to the Air Force to acquire and 

support the number of additional aircraft adequate for a major crisis, including aircrews, and 

maintenance, at that time, would have been anywhere from $15 to $50 billion.  It could be 

argued that the DOD has or will soon pay the same amount out of pocket already, but the costs to 

the Air Force would constantly grow due to continued support of the aircraft, as well as upgrade 

costs or aircraft replacement costs(Knight & Bolkcom, 2008).  Under that realization, the use of 

CRAF by the DOD is easily justified, and the focus has been on how to revamp the incentives to 

the carrier participants to keep them involved in the program.      
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In current CRAF operations, excesses in the CRAF capacity numbers have been identified as 

a possible risk by the Government Accountability Office’s evaluation of the DOD’s Mobility 

Capabilities and Requirement Study 2016 (Borseth, et al., 2010).  By reviewing and analyzing 

past schedules and the amount of cargo airlifted, this claim is easily verified and was identified 

as a portion of the problem statement in Chapter 1.  The CRAF program is critical to the DOD’s 

cargo airlift capability as well as its ability to meet our national objectives (Solis, et al., 2009).  It 

is important to better manage such an important capability effectively to reduce wasteful 

spending on behalf of the government as well as to reduce the cost implications on the airlines 

themselves for near term scheduling.   

Forecasting Techniques 

There are numerous regression and forecasting techniques available to apply to nearly 

any scenario with data.  Below are descriptions of the techniques that are applicable to this study.  

Simple linear regression assumes that there is a relationship between the dependent 

variable (Cargo) and the independent variable (BOG) that can be approximated by a straight line.  

Quadratic and polynomial regression is a form of nonlinear modeling that incorporates the 

equation of a simple parabola or a more complex curve with the coefficients or slopes of the 

independent variables representing the rate of curvature of the shape or the trend.  Time series 

regression is a form of polynomial regression that uses time as the independent variable 

(Bowerman, O'Connell, & Koehler, 2005).   

Smoothing models include simple moving average, exponential smoothing, and Holt-

Winter’s Method.  Exponential smoothing is a method that accounts for changing trends and 

seasonal factors over time.  More recent observations are given more weight compared to older 

observations.  Exponential smoothing has additional variations of the broader technique to 
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account for strong trends in seasonality, such as Brown’s Method or Damped Trend Method.  

For this research Holt-Winter’s Method (Additive), Seasonal Exponential Smoothing, and 

Simple Exponential Smoothing were the three best smoothing models.  Smoothing models 

applied to cargo forecasting was completed in recent research efforts, allowing for this research 

to focus more advanced techniques (DeYoung, 2012). 

Box-Jenkins Models, more commonly known as Auto-Regressive Integrated Moving 

Average (ARIMA) models, are forecasting models that are used to describe stationary time series 

in terms of relationship between data and the forecast errors.  A time series is stationary if the 

mean and the variance of the series are constant through time.  If not, the series is considered to 

be nonstationary and must be transformed.  An autoregressive (AR) model refers to a model that 

expresses the current time series value as a function of past time series values.  A moving 

average (MA) model refers to a model that uses past random shock values (errors) to predict the 

current time series.  A random shock value is the difference between the actual value and the 

forecasted value better known as the residual and it describes the effect of any remaining factors 

outside of the time series on the model (Bowerman, O'Connell, & Koehler, 2005).  An AR and 

an MA model can be combined to create a mixed model where all components are represented.  

The “I,” or integrated, component represents whether or not a difference transformation is used 

on the data series.  A first difference of the time series values is equivalent to the current time 

series value at time t minus the previous time series value at time t-1.  This transformation is 

applied to the entire data series to create a new working series (Bowerman, O'Connell, & 

Koehler, 2005).  Differencing transformations can be applied to both the nonseasonal and the 

seasonal components of the data series to create an updated “working” series.   
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The ARIMA model is represented in the format ARIMA(p,d,q), where p represent the 

order the AR term, d represents the order the differencing term and q represent the order of the 

MA term.  A time series that includes seasonal factors can be modeled in a more advanced form 

to include additional ARIMA terms purely related to the seasonal occurrence of the data (every 

12 months for example).   

An advanced ARIMA model allows for an independent time series to be used to predict a 

dependent time series.  There are two popular methods to perform this, the first is simpler and is 

known as an intervention model.  Intervention models are normally used when some kind of 

extreme event occurs such as a natural disaster that may impact the values of the data set such as 

a production capacity (Bowerman, O'Connell, & Koehler, 2005).  In this case, there is no 

extreme event, but there is still an external event, BOG, that may or may not affect the variable 

to be forecast, or cargo.  The result is to estimate a linear regression model that describes the 

intervention (BOG) and then, while assuming the error terms are statistically independent, 

develop an ARIMA model that adequately describes the error terms.  The ARIMA model of the 

error terms can be substituted for the error term at the end of a general regression model.      

The second form is more advanced and is known as a transfer function model and 

predicts future values of a time series on the basis of past values of one or more related time 

series.  It is similar to a regression model, but now includes a serially dependent response, inputs, 

and error terms.  The same modeling method applied to single time series ARIMA models is 

applied to the transfer function method, but is an iterative process used on multiple time series. 

Combining forecasts to improve prediction performance is also applied to multiple transfer 

function model as well as to a transfer function and other single time series ARIMA models.  

(Bowerman, O'Connell, & Koehler, 2005)  The combined forecasts method allows for linear 
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combination of the two forecasts from at least two different methods to be created.  The forecasts 

of two methods can be combined to create a single superior forecast than either model alone.  

(Montgomery, Jennings, & Kulahci, 2008).  The three forms of ARIMA modeling described 

above, standard ARIMA, intervention models and transfer functions are all modeling forms 

applied and compared with the exponential smoothing methods in this research.  The comparison 

and analysis of the techniques begins in Chapter 3.        

 ARIMA model building is a three-step iterative procedure that first requires a tentative 

model to be formed through analysis of the historical data.  Secondly, the unknown parameters 

are estimated and lastly, residual analysis determines model adequacy and room for 

improvements (Montgomery, Jennings, & Kulahci, 2008).  This brief outline of the procedure 

may make the process seem quick and insignificant, which at times may be the case, however, a 

much more detailed discussion on all three steps is required to actually apply the iterative 

technique correctly.  Only the steps of the procedures that are directly applicable to the model 

development will be quickly explained below.  

 Estimating an ARIMA model requires an initial evaluation of the raw data to determine if 

the data set is stationary or has constant variance.  As seen in the left hand plot (Figure 2) of the 

cargo data there is nonconstant variance displayed by the large differences between the increases 

and decreases in the data points and by the increasing mean, both hinting that a first-difference is 

necessary.  A first-difference transformation is applied and the data set (Figure 3) is significantly 

altered and now stationary.   
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Figure 2 JMP Raw Data Plot of Cargo 

 
Figure 3 JMP Plot of Transformed Cargo Data 

 
Once the data is stationary, the Auto Correlation Functions (ACF) and Partial Auto 

Correlation Functions (PACF) are reviewed for lags of significance and to determine the manner 

in which the consecutive lags decrease.  These indicators describe the parameters and the type of 

model (ex. AR or MA) that best fits the data.  Significance in the lags represents the presence of 

autocorrelation between the time series data points.  Looking at the ACF, the left hand function 

in Figure 4 below, a significant spike at the first lag means that we are rejecting the null 

hypothesis that the autocorrelation is equal to zero.  The function also displays a dying down 

trend.  The PACF, the right hand function in Figure 4, shows one near significant spike and a 

slow dying down trend.  Dying down on both the ACF and the PACF represents a mixed 

parameter model with the number of parameters corresponding to the number of significant 

spikes in the ACF and the PACF.   
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Figure 4 JMP Output of the ACF and PACF for the Cargo Demand 

The ACF/PACF analysis above describes the following ARIMA forecasting model

( )1,1,1ARIMA .  There is one AR term, one differencing transformation, and one MA term.  

There is also no seasonality.  Figure 5 shows the data transformation completed by subtracting 

the past term from the current term to create a new working series.  Figure 6 shows the 

theoretical form of the ( )1,1,1ARIMA  model.  The estimated series (Figure 7) is the fully 

constructed model with the actual estimated parameters.   
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Actual Va e = lu sTY  
ˆ  = Foreca  Vs aluestedTY  

Transformed Va  es= luTZ  
Time/Pe d = rioT  

 = Constant derived from Meanδ  
Autoregressive Coeffic = t ienφ  
Moving Average Coeffic = t ienθ  

 = Random ShockTa  
 = Backshift OperatorB  

Table 1  Definition of ARIMA Parameters 

 

( ) 1

Working Series
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Figure 5 First Difference Transformation 
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Figure 6  Theoretical ARIMA (1,1,1) Model 

 
( )( ) ( )( )1 2 1 1 1

ˆ23.87 0.47 0.76T T T T T T TY Y Y a Y Y Y− − − − −= + − + + − +  

Figure 7  Estimated ARIMA(1,1,1) Model for Cargo (tons) 

When estimating a model, diagnostic procedures are followed to ensure that the model is 

adequate.  This is done through residual analysis.  If the appropriate AR and MA orders have 

been identified, the residuals of the observations are transformed to white-noise processes.  The 

residual ACF and PACF are reviewed to determine if there is any significant structure left in the 

data that was not identified.  If there is no significant difference between the lags, the residuals 

indicate the current form of the model is good.  The Ljung-Box statistics for each lag determines 

whether or not there is a relationship between the residuals, if there is not, then the value is small 

indicating that the model is adequate.  We see below in Figure 7 that there are no significant lags 

as well as no significant Ljung-Box values and the associated p-values are also large indicating 
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the same.  Additionally, there are near significant terms at the 7th lag on both charts.  It would be 

worth experimenting with a seasonal model to reduce the autocorrelation further.   

 

Figure 8 RACF and RPACF for ARIMA(1,1,1) Cargo Model 

 Once the model is developed and determined to be adequate, the model development 

process is complete.  The next step is to determine whether or not that model in particular is the 

best one for the data set at hand.   A variety of goodness of fit checks can be used for the model 

selection and comparison.  A brief description accompanies the more important criteria below. 

The mean squared error (MSE) measures the variability in the forecast errors with the 

goal of small variability in the forecast errors.  The MSE is a direct measure of the variability of 

a one-step ahead forecast error (Montgomery, Jennings, & Kulahci, 2008).    
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Equation 1 Mean Square Error 
 

 
A maximally valued 2R  statistic is equivalent to minimizing the sum of the squared 

residuals (Montgomery, Jennings, & Kulahci, 2008).  Large values of the statistic represent a 

good fit of the predicted values to the historical data.  One has to be careful in using this value as 

it can be easily inflated by adding insignificant parameters to the model.  Having a parsimonious 

model is usually preferred when dealing with regression models or time series models. 
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Equation 2 R2  

 
 

The Akaike Information Criteria (AIC) and the Schwarz Information Criteria (SIC) are 

both similar criteria that penalize the sum of squared residuals for including insignificant 

parameters in the model (Montgomery, Jennings, & Kulahci, 2008).  For both criteria, a smaller 

value is desired.  As you can see below, the penalty for the AIC is smaller than that of the SIC.  

When these criteria are implemented in statistical programs, slight variations in the calculation 

may exist.  For example, the equations below are traditional textbook equations and the program 

JMP (JMP 10, 2012) implements a slightly different variation of both criteria where the penalties 

are slightly different. 
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Equation 3  AIC 
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Equation 4 SIC 

 The Mean Absolute Percentage Error (MAPE) and the Mean Absolute Error (MAE, also 

known as Mean Absolute Deviation or MAD) are shown below.  The MAPE is meaningful in 
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that it represents a scaled size of the forecast error in the model by being displayed as a 

percentage.  The MAE is useful depending on the unit of measurement of the dataset 

(Montgomery, Jennings, & Kulahci, 2008).  In this case, knowing the relative size of the cargo 

and using the same data with different models allows us to use both criteria for model selection.   

( )
1

1 1
n

t
t

MAPE re
n =

= ∑  (5) 
Equation 5 MAPE  

( )
1

1 1
n

t
t

MAE e
n =

= ∑  (6) 
Equation 6 MAE  

 

 An important aspect of model evaluation is to remember that none of these criteria should 

be used individually to select a best model.  Certain criteria, the MSE, R2, and the AIC, do not 

penalize the criterion value enough for including extraneous parameters, making them 

inconsistent.  The SIC, includes a “heavier” penalty for this, allowing for consistency and 

parsimonious models.   

The estimated coefficients, as seen in the Figure 10, are all determined to be significant.  

The goodness of fit criteria are displayed in Figure 9 below. 

 

Figure 9  ARIMA(1,1,1) Model Summary 

 

Figure 10  ARIMA(1,1,1) Parameter Estimates 

Developing a transfer function-noise model is a more complex process with additional 

steps to determine the model parameters.  It may be necessary to make stationary both the input 

data and the output data in different manners.  The next step is to prewhiten the data.  
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Prewhitening involves first finding an adequate ARIMA model that describes the input series 

(Bowerman, O'Connell, & Koehler, 2005).  The next step is somewhat more complicated.  Most 

statistical programs, in this case JMP, have the ability to prewhiten data.  It uses the parameter 

estimates from the estimated ARIMA model on the input series and solves for prewhitened 

output values.  The goal of which is to obtain a sample cross-correlation function (SCC) with a 

filtered input and a filtered output that can be used to identify the parameters of the transfer 

function model.  The SCC is a measure of the linear relationship between the prewhitened input 

and output values.   

The s operator measures the number of past transformed input values influence on the 

transformed output values.  The r operator measures the number of its own past values that the 

output is related to.  These operators are observed at both the nonseasonal and the seasonal level 

just like in standard ARIMA model development.  These appropriate operators can now be input 

into the general transfer function model to determine if all of the parameters are in fact 

significant to the model or not.  At this point, none of the parameters for the output series have 

yet been estimated.  The residual ACF and PACF charts must be analyzed once a parsimonious 

input model has been found.  The residual ACF and PACF charts identify an appropriate 

ARIMA model to describe the error terms, or the residual cargo data unaccounted for by the 

input model.  The final transfer function model is thereby obtained by the error term ARIMA 

model and the transfer function inputs.  The same model adequacy process must be continued at 

this point to determine if all parameters are in fact significant, if the residuals are not significant, 

and to determine if enough correlation is accounted for by the model.  Continuing this process 

resulted in two significant transfer function models to compare with the other models presented 

above. 
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Forecasting Demand 

For many years now, forecasting has been taken into consideration for operational 

planning in the civilian world.  Manufacturers (ex. car companies), airline companies, city 

planners, hospitals, and many other areas, businesses, or institutions incorporate mathematical or 

statistical methods in their strategic planning for future operations.  Managers or executives have 

long been asked to make a decision about the future and can potentially benefit by applying the 

general principles of forecasting.  One of the first decisions to make is what type of forecasting is 

necessary for the problem at hand.  There are two types to consider, qualitative or quantitative, 

and the selection depends on the context of the forecast, availability of data, the accuracy needed, 

the period to forecast, and the cost/benefit of the forecast (Chamber, Mullick, & Smith, 1971).  

By weighing these factors, a decision maker can choose an appropriate method or technique for 

the problem at hand.   

Qualitative forecasting is used when data are not available; therefore, logical judgment is 

used to estimate factors.  Quantitative forecasting incorporates both time series methods and 

causal models.  Time series techniques are beneficial when several years of data are available 

and helps identify and explain seasonality, cyclical patterns, trends, or growth rates of the trends 

within the data.  Casual modeling is the most mathematically complex form of forecasting and 

analysis.  Mathematics expresses relationships within the data or between different variables and 

can account for cause and effect relationships from events as well.  (Chamber, Mullick, & Smith, 

1971)  For the issue at hand, complexity is necessary in order to increase the accuracy of the 

forecast and to ensure that the historical data could produce beneficial results.    

Although the current problem is directly related to airlifting cargo, there are many other 

examples of forecasted demand using the same techniques.  Studies have been conducted using 
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demand forecasting for semiconductor companies to determine investment and manufacturing 

strategies for capacity planning.  Semiconductors have no relation to cargo, but as shown, time 

series methods have been applied in many companies that are increasingly dependent on future 

demands.  The semiconductor research proposed using a multi-generation diffusion model that 

involving multiple input factors that changed across technological generations (Chien, Chen, & 

Peng, 2008).  The complexity and broadness of this type of model is not necessary for this 

problem, but presents a very interesting approach that provides good fitting models and precise 

forecasts.   

Forecasting cargo demand is quite common.  Companies such as Federal Express use 

forecasting models to forecast their cargo growth into the future to plan for acquisitions and site 

expansions (Datamonitor, 2011).  Many states provide basic forecasts of cargo shipments into 

their state as a measure of potential profitability.  California and Florida specifically have done 

extensive studies about the future of air cargo tonnage in their states and the impact it presents on 

their current airport capabilities (TranSystems, 2010; Air Cargo Tonnage Forecast and Capacity 

Analysis, 2005).  However, these analyses only look at past trends and uses naïve forecasts based 

on numbers from the shipping companies.   

More advanced air-cargo demand forecasting has been approached in recent years as 

well, as it is one of the key issues of airline revenue management.  A new technique called 

support vector machine (SVM) model was applied to cargo-volume data from Beijing and then 

compared Brown’s Cubic exponential smoothing model (Heng, Zheng, & Li, 2009).  The 

accuracy of the SVM forecasting model is more accurate than Brown’s model; however, more 

research needs to be conducted in the application of structure based learning models to determine 

if SVM is generally better at time series prediction.  Although this technique may be useful in the 
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future, a black or grey box approach is not as valuable to the user at this time due to a more 

difficult implementation.   

More traditional time series forecasting approaches as mentioned in the previous section 

are easily implemented and automated.  As we show in the next section, these types of models 

are also quite precise as well.  The research did not provide a direct application of exponential 

smoothing methods or ARIMA methods used on airlift or cargo demand, but still produced other 

forecasting demand applications that are just as beneficial.  Time-series forecasting using 

ARIMA and SARIMA methods to estimate future primary energy demand of Turkey from 2005 

to 2020 have been shown to be reliable methods (Ediger & Akar, 2007).  Energy forecasting 

dates back to the 1960s and recent studies have applied regression, auto regression, genetic 

algorithms, ARIMA, SARIMA, and neural network methods to historical data.  Research has 

shown that the parameters used in these various methodologies usually deviate from the actual 

values, making the forecasts unreliable.  By using ARIMA or SARIMA, the additional 

parameters can be eliminated and the energy demand can be estimated by its own time series.  

The final results showed that the ARIMA and the SARIMA models were both efficient and 

reliable for forecasting of energy demand based on the type of energy.   

Further research provides an excellent comparison of SARIMA and artificial neural 

networks (ANN) to forecast cement demand (Liu, Chen, Yang, Hung, & Tsai, 2008).  The study 

compares the forecast accuracy of the two methods.  ANN is a complex modeling approach that 

most mathematical or statistical packages now implement.  The black box work of an ANN 

involves continuously adjusting weighted values applied to the inputs until the network output 

reaches a target value.  The conclusion was that the ANN can provide a more accurate demand 

forecast without the addition of functions to account for outside influences.  The SARIMA 
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performed well, but needs possible modification to an intervention model to account for 

holidays, weather, and economic cycles.   

Summary 

 There is no single best forecasting method.  The selection of the appropriate model has 

many determining criteria and is subjective to the output, the available information, and the user.  

The literature has expressed that forecasting is both an art and a science and the development of 

the model depends on both the analytical steps developed and what constitutes a pattern or a 

significant feature.  This study compares forecasting techniques through application and provides 

analysis as to which method is preferred for the problem of predicting cargo demand.   
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III. Methodology 

This section discusses the development of the forecasting models and the cargo 

scheduling heuristic constructed to simulate Dover AFB aerial port airlift to Afghanistan.   

Scope and Data Description 

The TACC Strategic Airlift Simulation (TACCSAS) is constructed as a tool to test the 

usefulness of previously constructed airlift schedules and to forecast future demand and evaluate 

potential airlift schedules.  TACCSAS allows the user to simulate scheduling cargo pallets and 

airlift for a specific month based on previously constructed schedules, or to forecast a full year, 

one quarter, or a single month ahead.  All pallets travel from Dover AFB using CRAF aircraft 

and Organic military aircraft previously purchased or scheduled for that month.  The user selects 

the period that they would like to simulate and then selects the simulation parameters to include 

number of runs and cargo pallet weight distribution parameters.  The user determines available 

numbers of aircraft types, can add and delete aircraft available for transport, change aircraft 

capability parameters, and add or delete scheduled aircraft departures.  Once the simulation has 

run, the user can view and compare the collected statistics.  TACCSAS was constructed entirely 

using Microsoft Excel Visual Basic for Applications (VBA) (Microsoft, 2007).  Examples of 

TACCSAS operations and further description are provided in Appendix E.                                                                                                             

The data used for forecasting is provided by GATES.  GATES is an automated aerial port 

processing system that aids in scheduling of unit and cargo movement and shipment forecasting.  

(Westcott, 2006)  The GATES data sets are generated by fiscal year (FY) and include 31 

categories by which to sort the data.  These categories include pallet ID number, date of pallet 

arrival, gross pallet weight, mission ID numbers, aerial port of departure (APOD), aerial port of 

embarkation (APOE), and departure date among many others.  To ensure adequate models could 
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be developed, GATES reports for FY2005 through FY2010 are split into monthly cargo totals 

shipped into Afghanistan.  Pallet data from FY2011 is separated and used validation.  The issue 

with the GATES data outputs is that the cargo report generated includes all cargo entries from all 

APOEs to all APODs for every mission type.  This allows for FY report to include anywhere 

from 275,000 to 325,000 individual entries.  Figure 11 shows the mission character codes 

observed and filtered to simplify the data set.  Under Second Character, only channel cargo is 

observed, so all mission IDs including the character “B” are retained.  Under Third Character, all 

missions are retained except those IDs that include “C” or “P.”

 

Figure 11 AMC Mission Character Codes (AMC/A3CF, 2012) 

The research focuses on cargo channel missions directed to Afghanistan.  To reduce the 

data set even further, only entries that departed from Dover AFB and arrived in Afghanistan are 

considered.  The data set includes repeat pallet entries, which occurred whenever an individual 

pallet was transferred to a different aircraft.  Only considering the pallets that entered into 

Afghanistan filtered out the repeated pallet entries.  The data were then sorted by month and 

summed into a single tonnage scheduled for that month.  The monthly totals are used to generate 

the forecasting models.  Monthly totals are used to accommodate the monthly BOG input.  

Weekly BOG values were unattainable.         
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Model Selection 

All of the approaches described in Chapter 2 are applied to the problem.  The result is a 

detailed comparison of 11 different models.  

 Chapter 2 presented a number of different criteria to evaluate the goodness of fit of the 

models that are developed.  Below is a detailed chart of 9 of the 11 models that are developed as 

are summarized by JMP.  The two regression models are not included in the chart due to the 

limitations of the JMP program.  All of the models are good models according to the criteria 

presented.  The smoothing methods provided the best results and the next best are the transfer 

functions.  The standard ARIMA models had too much variance between the predicted and the 

actual values.   

If it were only a matter of choosing the best, one would easily choose Transfer Function 

Model (1) as its criteria are better in most aspects.  However, the best way to evaluate a model is 

validation via data splitting.  Data splitting divides the data into two segments, one to fit the 

model and one to evaluate the model (Montgomery, Jennings, & Kulahci, 2008).  The benefit of 

this technique is the knowledge of how the model will perform on new data and to compare 

competing models.  Data splitting is performed on the 12 cargo values for FY11.  All 11 models 

provided 12 month forecasts.      

 

Figure 12  JMP Output - Model Selection Criteria 
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 Data splitting may not always be an option.  The purpose of forecasting is to provide a 

prediction for the future, often times eliminating the ability to validate results.  For this reason, 

goodness-of-fit criteria provide standardized evaluation methods to determine which model best 

fits the data.  In addition to the criteria, one must apply common sense to the evaluation.  If the 

model maps the data set near perfectly, but provides extreme forecasts, then the criteria are not 

useful and neither is the model.   

Table 2 indexes each model developed.  Throughout the model selection process each 

model is referenced by its specific number.   

 

 
Table 2  Model Number Designators 

 To select the best fitting model among such similarly valued selection criteria, data 

splitting is employed by holding out FY2011 cargo demand data from the forecast.  A 12-month 

forecast is conducted for each model and then compared with the actual FY2011 results shown in 

Table 2.  The residuals are then used to compute the percentage deviation from the actual results 

shown in Table 3.  The research shows that some of the models only predict the first month and 

use that value for all of the following forecasts.  Other models have adjusted values for each 

month.  Some of these models incorporate some degree of seasonality in the data, whether from 

Model 1 Linear Regression 
Model 2 Intervention 
Model 3 Simple Exponential Smoothing
Model 4 Double Exponential Smoothing
Model 5 Seasonal Exponential Smoothing
Model 6 ARIMA(1,1,1)
Model 7 ARI(1,1)
Model 8 IMA(1,1)
Model 9 Seasonal ARIMA (0,1,1)(1,0,1)12
Model 10 ARIMA(1,0,0) / ARIMA(0,1,1)
Model 11 ARIMA(0,0,1) / ARIMA(0,1,1)
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the Tons of Cargo or from the BOG input.  There is no expectation that the model can accurately 

predict a full years worth of cargo demand, but a fair estimate is necessary.  The critical forecasts 

are the ability to predict a quarterly buy (3 month forecast) or a monthly buy (1 month forecast).   
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Table 3  Actual Tons of Cargo vs. Predicted Tons of Cargo 

Table 4 Percentage Deviation from Actual Tons of Cargo 

Date Tons of Cargo Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11
Oct-10 3,300.60         4,922.26       4,074.61       3,306.13       3,187.91       3,635.69       3,512.38       3,235.07       3,399.52       3,503.98       3,510.47       3,635.99       
Nov-10 4,149.92         4,922.26       4,540.01       3,306.13       2,924.94       3,520.29       3,779.81       3,227.67       3,439.99       3,481.50       3,725.43       4,090.68       
Dec-10 4,536.60         4,922.26       4,862.79       3,306.13       2,661.98       3,619.96       3,930.55       3,276.24       3,480.45       3,547.50       3,785.59       3,940.11       
Jan-11 5,069.22         4,922.26       5,082.43       3,306.13       2,399.01       3,752.85       4,025.93       3,311.95       3,520.92       3,624.14       3,765.92       3,797.04       
Feb-11 4,852.68         4,922.26       4,929.59       3,306.13       2,136.05       3,783.84       4,095.04       3,350.61       3,561.38       3,661.37       3,706.01       3,661.09       
Mar-11 4,529.13         4,922.26       5,040.70       3,306.13       1,873.08       4,480.50       4,151.70       3,388.59       3,601.85       4,002.25       3,626.78       3,531.91       
Apr-11 4,037.11         4,922.26       5,232.21       3,306.13       1,610.12       4,461.58       4,202.45       3,426.73       3,642.31       4,016.71       3,539.20       3,409.17       
May-11 4,370.84         4,922.26       5,042.36       3,306.13       1,347.15       4,284.65       4,250.39       3,464.84       3,682.78       3,959.10       3,449.01       3,292.55       
Jun-11 5,318.32         4,922.26       4,982.95       3,306.13       1,084.19       4,401.08       4,297.01       3,502.95       3,723.24       4,035.31       3,359.19       3,181.73       
Jul-11 3,691.94         4,922.26       4,863.00       3,306.13       821.22          4,349.26       4,342.99       3,541.06       3,763.71       4,034.77       3,271.24       3,076.43       

Aug-11 4,014.77         4,922.26       4,734.02       3,306.13       558.26          4,295.82       4,388.68       3,579.17       3,804.17       4,033.49       3,185.88       2,976.38       
Sep-11 4,941.08         4,922.26       4,423.57       3,306.13       295.29          3,732.69       4,434.22       3,617.28       3,844.64       3,799.72       3,103.44       2,881.31       

Date Tons of Cargo Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11
Oct-10 3,300.60         49.13% 23.45% 0.17% 3.41% 10.15% 6.42% 1.99% 3.00% 6.16% 6.36% 10.16%
Nov-10 4,149.92         18.61% 9.40% 20.33% 29.52% 15.17% 8.92% 22.22% 17.11% 16.11% 10.23% 1.43%
Dec-10 4,536.60         8.50% 7.19% 27.12% 41.32% 20.21% 13.36% 27.78% 23.28% 21.80% 16.55% 13.15%
Jan-11 5,069.22         2.90% 0.26% 34.78% 52.67% 25.97% 20.58% 34.67% 30.54% 28.51% 25.71% 25.10%
Feb-11 4,852.68         1.43% 1.58% 31.87% 55.98% 22.03% 15.61% 30.95% 26.61% 24.55% 23.63% 24.56%
Mar-11 4,529.13         8.68% 11.30% 27.00% 58.64% 1.07% 8.33% 25.18% 20.47% 11.63% 19.92% 22.02%
Apr-11 4,037.11         21.93% 29.60% 18.11% 60.12% 10.51% 4.10% 15.12% 9.78% 0.51% 12.33% 15.55%
May-11 4,370.84         12.62% 15.36% 24.36% 69.18% 1.97% 2.76% 20.73% 15.74% 9.42% 21.09% 24.67%
Jun-11 5,318.32         7.45% 6.31% 37.84% 79.61% 17.25% 19.20% 34.13% 29.99% 24.12% 36.84% 40.17%
Jul-11 3,691.94         33.32% 31.72% 10.45% 77.76% 17.80% 17.63% 4.09% 1.94% 9.29% 11.40% 16.67%

Aug-11 4,014.77         22.60% 17.91% 17.65% 86.09% 7.00% 9.31% 10.85% 5.25% 0.47% 20.65% 25.86%
Sep-11 4,941.08         0.38% 10.47% 33.09% 94.02% 24.46% 10.26% 26.79% 22.19% 23.10% 37.19% 41.69%
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 It can be difficult to visualize the differences between the models when looking at a chart 

of numerical values or percentages.  The figures below provide a visual representation of all of 

the models predicted values compared to the actual tons of cargo.  The benefit of the charts is 

that one can see how closely the models follow the entire five year sequence of actual values as 

well as the disadvantages of the forecasted values.  It is quite apparent which models attempt to 

forecast with any degree of accuracy and which models are only capable of providing a one-step 

ahead forecast.  Seasonality can be important in forecasting as it allows for increases and 

decreases correlated with certain seasonal trends.  Unfortunately, in some models the seasonality 

can sway the predictions in the wrong direction based on prior trends.  Judging by appearance, 

there appears to be one stronger model or better estimating model that stands out in each chart in 

Figure 13, Figure 14, and Figure 15.  The transfer function models have the worst predictive 

capability in this case (Figure 16).  

 
Figure 13 Tons of Cargo vs. Regression Models 

Linear Regression 

Intervention 

Tons of Cargo
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Figure 14 Tons of Cargo vs. Exponential Smoothing Models 
 

 

Figure 15 Tons of Cargo vs. ARIMA Models 

Simple Exponential Smoothing

Double Exponential Smoothing

Seasonal Exponential Smoothing

Tons of Cargo

Tons of Cargo

ARIMA(1,1,1)

ARI(1,1)

IMA(1,1)

SARIMA(0,1,1)(1,0,1)12
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Figure 16 Tons of Cargo vs. Transfer Function Models 

The three month forecast is represented below in Table 5.  The field of models is 

narrowed down by observing the percentage deviation on a three month forecast.  The absolute 

deviation measures the accuracy of the prediction.  Percent deviation is equal to |Actual-

Forecast|/Actual.  For this forecasting application, it is not as important to measure the increase 

or decrease of the forecast from the actual value.  If the forecast is too high, too many aircraft are 

reserved and cancellations will occur, and the cost to schedule will be incurred.  If the forecast is 

too low, then “expansion buys” will have to be completed and additional money will be spent.  

The deviations in the forecasts in Table 5 appear to steadily increase due to larger increases from 

October 2010 to December 2010 in the data set.  In this situation, planning would remain slightly 

ad hoc, but a foundation of scheduled aircraft can still be established from the forecast.  Once the 

next data point is included into the data set, all models need to be rerun and a new best fitting 

model selected.  Rerunning the models with all available data includes the most recent changes 

and the better models will begin to react appropriately.     The downfall to the simulation is if the 

Tons of Cargo

ARIMA(1,0,0)/ARIMA(0,1,1)

ARIMA(0,0,1)/ARIMA(0,1,1)
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forecasts happen to be low for the upcoming months, then the planners make more purchases for 

the monthly buy.   

 

Table 5 Quarterly Buy Forecast Comparison 

 The one month forecast is represented in Table 6.  Since all of the models are similar in 

their predictive ability, with the exception of Model 1, the same set of five models are compared 

for the one month forecast.  All of the models are very close when it comes to one month 

forecasting, however, the Model 8 stands out above the rest.  Further data splitting analysis is 

conducted on the five remaining models in Chapter 4. 

Date Tons of Cargo Model 1 Model 2 Model 5 Model 6 Model 8 Model 9
Oct-10 3,300.60         4,922.26    4,074.61   3,635.69   3,512.38   3,399.52   3,503.98   
Nov-10 4,149.92         4,922.26    4,540.01   3,520.29   3,779.81   3,439.99   3,481.50   
Dec-10 4,536.60         4,922.26    4,862.79   3,619.96   3,930.55   3,480.45   3,547.50   

Date Tons of Cargo Model 1 Model 2 Model 5 Model 6 Model 8 Model 9
Oct-10 3,300.60         (1,621.66)   (774.01)     (335.09)     (211.79)     (98.92)       (203.38)     
Nov-10 4,149.92         (772.34)      (390.09)     629.62      370.11      709.93      668.42      
Dec-10 4,536.60         (385.65)      (326.19)     916.64      606.06      1,056.15   989.10      

Date Tons of Cargo Model 1 Model 2 Model 5 Model 6 Model 8 Model 9
Oct-10 3,300.60         49.13% 23.45% 10.15% 6.42% 3.00% 6.16%
Nov-10 4,149.92         18.61% 9.40% 15.17% 8.92% 17.11% 16.11%
Dec-10 4,536.60         8.50% 7.19% 20.21% 13.36% 23.28% 21.80%

25.41% 13.35% 15.18% 9.56% 14.46% 14.69%Average % Deviation

Actual vs Predicted

Resduals

Percentage Deviation
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Table 6 Monthly Buy Forecast Comparison 

Modeling Approach 

The modeling approach was initially a reverse concept to determine whether or not 

optimization of CRAF on a monthly basis was necessary and to determine what the cost savings 

are.  In this case, cost savings are determined by the number of cancellations generated on a 

monthly basis.  As described in Chapter 1, it may seem counterintuitive that savings involve 

paying to cancel a plane; however, the cancellation cost is only ~20% of the flight cost.  If cargo 

loading is optimized on specific types of CRAF airframes, then it is easy to calculate the 

approximate number of aircraft necessary to move a certain number of cargo pallets or cargo 

tons.  The simulated number of aircraft used to airlift the cargo pallets is then compared to the 

actual number of aircraft used, with the difference in numbers turning into immediate savings. 

This report previously mentions the use of simulation for operational planning, 

specifically Monte Carlo simulation.  Monte Carlo simulation is a method of analysis (usually 

using a computer) to recreate a random process many times in a model of a real system to study 

and understand the system (Barreto & Howland, 2006).   

Fortunately, an initial framework of the Monte Carlo simulation was constructed by 

Lindstrom in his Graduate Research Project (GRP) (Lindstrom, 2012).  The previous solution 

Date Tons of Cargo Model 2 Model 5 Model 6 Model 8 Model 9
Oct-10 3,300.60         4,922.26   3,635.69   3,512.38   3,399.52   3,635.99   

Date Tons of Cargo Model 2 Model 5 Model 6 Model 8 Model 9
Oct-10 3,300.60         (774.01)     (335.09)     (211.79)     (98.92)       (203.38)     

Date Tons of Cargo Model 2 Model 5 Model 6 Model 8 Model 9
Oct-10 3,300.60         23.45% 10.15% 6.42% 3.00% 6.16%

Actual vs Predicted

Resduals

Percentage Deviation
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was reworked into TACCSAS to provide quick answers by selecting a few options.  By 

reworking the problem from the beginning, the new system is now more robust and flexible to 

meet the needs of TACC.   

To simulate the actual process, Monte Carlo simulations of a selected month are run 

using randomized parameters calculated based on distributions modeling the actual pallet data.  

The real time data required to perform the operational planning aspect is the pallet data.  The 

weight of the pallet, the destination of the pallet and the arrival date of the pallet to the base are 

the three important components.  These three parameters are randomly produced with each run to 

fill a realistic schedule.  The randomized weights of the pallets are provided by selecting one of 

the following distributions:  Exponential, Lognormal, Normal, Weibull, or Triangular.  Once a 

distribution is selected, the distribution parameters from the past pallet data from the selected 

month are calculated and used as the basis for the random weight distribution.  For example, if 

the normal distribution is selected to simulate the pallet weight from October, then the mean and 

the standard deviation from the past October’s pallet data is calculated and used to produce a 

predetermined number of random pallet weights.  A random destination location is then assigned 

to each individual pallet based off of the distribution of the actual destination locations from the 

selected month.  For example, the month of October may show that 40% of the actual scheduled 

pallets are destined for Kandahar, 30% to Bagram, and 30% to Bastion; the pallet locations are 

then randomly assigned to follow this discrete distribution.  A random date is also assigned to 

each pallet simulated.  The dates are drawn from a discrete distribution derived from the actual 

past month’s pallet data.  A sample of the actual aircraft schedule, actual pallet schedule, discrete 

distribution, and Monte Carlo Simulation is viewed in Appendix D.  These three components 
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then make up a simulated full month of pallets that are sorted by date, then location, and are 

assigned to individual aircraft.   

Sometimes in Operations Research, there are problems that require too much 

computational time to solve exactly or may require an approximate solution method due to the 

nature of the problem.  In these cases, constructive methods known as heuristics are useful for 

finding good, yet not exact, solutions.  Given more time and more fidelity in the data available, 

an optimal solution may have been possible for the problem, however, heuristics methods have 

allowed for a good feasible solution with room for sensitivity analysis.   There are many benefits 

to heuristic methods; the biggest may be that they tend to be common-sense approaches that are 

tailored to the specific problem (Metaheuristics, 2005).  As seen in the section Cargo Loading 

Algorithm, heuristic methods are often iterative algorithms where each iteration conducts a new 

search for a better solution.   

After the heuristic, known as the cargo loading algorithm, was developed for the pallet 

assignment, the forecasting portion was incorporated to allow for the operational planning aspect 

of the problem in addition to the sensitivity analysis portion.   

Model Inputs 

 The first input required is the cargo tonnage forecast generated from the cargo forecast 

models.  The model requires an estimated number of pallets for a single month period.  The 

number of pallets is derived from the weight distribution assigned to the cargo pallets.  For 

example, if TACC will airlift 3,000 tons of cargo in January to Afghanistan, and the average 

pallet weighs 2 tons, then the simulation input is 1,500 pallets.  The pallet weight is then 

normally distributed with the mean and the variance generated by the GATES data and using the 

minimum pallet weight as a floor for the distribution to prevent negative pallet weights.  The 
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model then assigns the pallets to the existing CRAF airframes in the current inventory based on 

the route that the airframes are assigned.  Once all the pallets are assigned or once all of the 

available aircraft are filled either with minimum number of pallets or by the minimum number of 

tons, the problem completes and the statistics (averaged by number of runs) are displayed.     

Cargo Loading Algorithm 

 The main objective of the problem is to move as much cargo as possible as efficiently as 

possible.  The ACL constraints allow for the additional objectives of minimizing the number of 

aircraft used and minimizing the cost of the airlift schedule achieved in the process.   Due to the 

current operations of USTRANSCOM, the algorithm fills CRAF aircraft flying directly to an 

AOR location first before filling Organic aircraft going to the same location on the same day.  

For this research, cargo with an assigned destination is only loaded onto an aircraft with the same 

destination.     

 The algorithm is initialized after receiving three initial inputs:  the weight of the 

individual pallets, the APOD of the pallet, and the date of departure from DOVER AFB.  Once 

received, either through simulated data or from the actual cargo data, the first phase of the 

algorithm assigns pallets to available CRAF.  The algorithm examines pallets in the sorted order 

of date available, then APOD.  It then determines if any CRAF aircraft are flying on that date 

and going to that APOD.  The pallets available for shipping on that day or that had not yet been 

shipped the previous days to the same location are assigned to the available aircraft.  Loading 

pallets continues until the weight limit is met or until all of the pallets slots are filled.  This 

process is repeated until all aircraft available for flying on that date are filled to capacity or until 

all of the pallets have been loaded, whichever occurs first.    
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 If there are no CRAF aircraft available for airlift on that specific day and going to that 

same location, the algorithm then moves to the second phase to determine if there are any CRAF 

available flying to enroute locations.  If there are no enroute CRAF flights available on that day, 

the algorithm moves to the third and final phase to determine if any organic military aircraft are 

available on that date and going to that APOD.  The organic military aircraft are the final attempt 

to transport skipped pallets.  If there are no more aircraft to accommodate the available pallets, 

then the pallets remain on site and are moved later.   

 The general outline of the objectives and the constraints for the process are shown below.  

The objectives apply to the problem as a whole, while the constraints are applied in an iterative 

process checks each of these constraints in the order of the subscripts.   

 

For each  = 1 to Days in Month (ex. Jan = 31 days)
     For each  = 1 to Location Number (ex. 1 = OAKN)
          For each  = 1 to Number of Aircraft Types (ex. B747-200 is one type)
               
  

i
j

k

             If current aircraft = "CRAF" and current aircraft flies to  and is available on  Then
                                        
                                    While Total tons on airc

j i

raft  MaxTons And Total # Pallets on Aircraft  MaxPallets
                                               For each pallet not yet shipped by date  going to location 
                                 

i j
≤ ≤

                 
                                               Increment Total Tons and Total # Pallet

                                               If Total tons on aircraft > MinTons Or Total # Pallets on Aircraft  > MinPallets Then
                                                     Then schedule loaded aircraft
                                               If aircraft is not loaded, then cancel                  
   

Figure 17 Cargo Loading Algorithm 
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System Output 

 TACCSAS provides individual run outputs and outputs averaged across all runs of the 

simulation.  The averaged statistics shown in Table 7 are classified by airframe and show 

average allocation of pallets and utilization of the airframe.  

 

Table 7 Sample Simulation Output 

The statistics give necessary into how the available aircraft can be used.  Another statistic 

tracked is the potential total cost if all scheduled and available CRAF aircraft are utilized during 

the simulated month.  The cost of the simulated schedule is calculated with the cost savings as 

the difference between the number of CRAF actually used and the number of CRAF available.  

The total cost includes a cancellation fee of $100,000.  For validation purposes, and to determine 

if the simulation is beneficial, cost savings are calculated by comparing the simulation to the 

actual schedule used (Table 14).   

Port hold times are also calculated.  Port hold time is the amount of time a pallet spends 

in port until it is shipped.  Large port hold times represent inefficiencies in the airlift schedule 

possibly due to not enough aircraft traveling, or (as will be shown in Chapter 4) poor scheduling 

of airlift.  Due to the nature of the military’s business, most cargo traveling to an AOR is 

important in some way and military personnel cannot afford to wait long periods of time for their 

# missions Tonnage Tons/msn plt offer pallets used % pallets utilized Avg pallet wt
B74710 19 1248.21 65.70 798.00 192.20 24.1% 6.51
B74720 45.8 4945.86 107.99 3068.60 765.00 24.9% 6.47
B74740 7.30 884.68 121.18 540.20 130.60 24.2% 6.78
C005A 6.00 348.10 58.02 216.00 52.60 24.4% 6.66

MD011F 20.10 1638.75 81.53 703.50 255.50 36.3% 6.42
C005B 3.70 206.54 55.87 133.20 32.40 24.0% 6.60
C017A 23.3 939.20 40.32 419.40 147.50 35.2% 6.38

Total/Avg 125.2 10211.34 81.56 46.96 12.59 26.8% 6.48

Simulated Pallet Statistics
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shipments.  Although the focus of this research is not port hold times, it is important to monitor 

such important factors to determine positive or negative impacts based on the changes this 

research suggests.  The simulation calculates port hold times for each individual pallet as the 

difference between the date a pallet is shipped and the date of pallet arrival at the APOE.  

Model Verification & Validation 

 The model is verified in a step-by-step fashion.  The Monte Carlo simulation is verified 

by reviewing randomization, the distribution, and the values of the generated pallet weights, the 

arrival dates, and the locations.  Verification also involves stepping through the cargo loading 

algorithm to determine accurate loop entry, day selection, location selection and available 

aircraft determination.  If aircraft are available, it is observed if pallets proceed to be assigned to 

the aircraft until the minimum or maximum constraints are met.  All types of aircraft must be 

approached for availability if pallets still remain to be delivered.  Lastly, internal run statistics 

are reviewed to determine if the pallets are being assigned to aircraft, if all aircraft can be filled, 

if the aircraft constraints are met, if all pallets are shipping when possible, and that the algorithm 

is moving across all three phases and is properly terminating.   

 Validation of the simulation involved comparison to past records and data splitting.  

TACCSAS provides the option to run both a simulation with random pallet data and a simulation 

using the actual pallet data for the specified month as pulled from the GATES records.  The 

random pallet data uses the actual pallet number and pallet weight distributions for the specified 

month.  Both simulations use the actual airlift schedule to ensure that the necessary parameters 

are properly compared.  This allows the user to view the simulated pallet statistics side-by-side in 

matching charts.  This cross check validates that the model is performing as necessary and that 

any statistical calculations are accurate.  It also allows the user to immediately determine 
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whether or not the actual schedule is optimal or where improvements can be made in the future 

by comparing the number of pallets shipped, the tons shipped, and the number of CRAF 

cancelled.   

 
Table 8  Example of Simulation Results with Actual Pallet Data 

Summary 

 There are three very distinct components to the problem methodology.  The first portion 

required sorting and parsing the original GATES data set for FY 2005-2011.  Excel macros are 

developed to perform these actions and to separate the information necessary for a month-by-

month examination.  The reduced data is compiled with a single monthly cargo demand time 

series used to develop an appropriate forecasting model.  A number of suitable models are 

constructed that provided accurate forecast data.  After observing each model in different 

forecasting scenarios, the set was cut down to the five best models.  These models are further 

evaluated in Chapter 4.  The final component was to develop a simulation of a monthly pallet 

schedule and individual pallet weights to be assigned to a predetermined aircraft schedule.  The 

simulation includes a cargo loading algorithm that assigns available pallets to available aircraft 

based on day of the month and APOD.   

 

# missions Tonnage Tons/msn plt offer pallets used % pallets utilized Avg pallet wt
B74710 12 796.37 66.36 504.00 438.90 87.1% 1.82
B74720 33.2 3597.19 108.35 2224.40 1944.30 87.4% 1.85
B74740 6.50 785.42 120.92 481.00 400.00 83.1% 1.97
C005A 6.00 344.77 57.46 216.00 188.00 87.0% 1.83

MD011F 14.10 962.28 68.24 493.50 476.20 96.5% 2.02
C005B 1.80 95.17 52.82 64.80 56.60 87.2% 1.70
C017A 5.4 202.00 37.48 97.20 89.70 92.2% 2.26

Total/Avg 79 6783.21 85.86 51.66 45.49 88.1% 1.89

Real Pallet Statistics
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IV. Analysis 

Model Analysis 

It is difficult to accurately provide long term forecasts; a simple trend may increase or 

decrease deviations through time.  After finding the best five models, an iterative comparison 

determined which model could most accurately predict cargo tonnage for multiple scenarios.  It 

is important to repeat the comparison process while adding in new data to see how the models 

accommodate the change and adjust their forecasts.  For example, one of the models had a very 

low forecast initially for one month out, but after including the data that accounted for the drastic 

increase, the model corrected and began to forecast better.  The question is if these models are 

only good in an instance or if forecasting (and these models specifically) can be regularly applied 

to cargo demand.  This process proved that these models are capable of accommodating change 

and continually predicting cargo tonnage on a yearly, quarterly, or monthly basis.   

The intervention model, seasonal exponential smoothing, ARIMA, IMA, and SARIMA 

models are all repeatedly updated by adding new observations to the data set.  All of the 

predicted values are compared to the actual values and two models stood out:  the intervention 

model and the SARIMA model.  Although the intervention model seemed the best model, the 

lack of real BOG numbers caused the forecast to change when provided different real world 

values.  These two models are better at making significant adjustments to rapid increases and 

decreases.  This allows for relatively accurate predictions.  Forecasting is by no means an exact 

science, but the ability to adjust to change is important.  The seasonal exponential smoothing 

performed the worst, due to its inability to quickly respond to significant changes.   

Table 9 provides a brief look into the final model analysis and selection.  Each of the five 

models was rerun 12 times, each time adding in a new data point.  The top row is the number of 
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observations that are included in the model development and the second row is the number of 

months forecasted.  The percentage deviations indicate how well the models forecasting abilities 

adapt beginning with a full year forecast all the way down to forecasting the final month of the 

year.  The “Avg” column on the far left is the average percent deviation of the forecasted values.  

The intervention model regularly performs better than all the other models.  The ARIMA(1,1,1) 

and the IMA models are the next best models and display more improvement and greater 

accuracy than the last two models.   

 

Table 9  Percentage Deviation Iterative Model Comparison 

 Table 10 compares the one month ahead forecast accuracies.  The most appropriate 

solution methodology for the problem requires not only a reasonable forecast for a full year, but 

accurate predictions for the upcoming month in order to finalize airlift schedules.  Due to the 

nature of using real world data, there will always be instances where data points are drastically 

different from the previous points.  This is the case with the cargo data since it depends on 

current operations in the AOR.  Despite that, many of the forecasts are within 10% of the actual 

value and in some cases within 5% or less.  Based on average month-to-month accuracy, the 

intervention model, ARIMA, and the IMA models are the best.  The IMA model has a lower 

average than the SARIMA, but the SARIMA has closer minimum and maximum deviations.  

The SARIMA will be used in the simulation along with the intervention model and the ARIMA 

69 obs 70 obs 71 obs 72 obs 73 obs 74 obs 75 obs 76 obs 77 obs 78 obs 79 obs 80 obs
12M 11M 10M 9M 8M 7M 6M 5M 4M 3M 2M 1M Avg

Inter 13.71% 10.25% 10.29% 11.06% 11.98% 13.21% 13.57% 12.51% 15.17% 20.88% 6.23% 12.01% 12.57%
SES 14.47% 16.83% 14.86% 16.89% 22.22% 24.37% 16.54% 14.14% 16.64% 23.24% 15.31% 29.39% 18.74%

ARIMA 11.37% 12.94% 10.85% 10.91% 13.96% 15.05% 13.98% 12.34% 14.95% 23.70% 7.44% 14.02% 13.46%
IMA 11.37% 19.87% 12.30% 11.29% 17.73% 18.56% 14.95% 11.82% 14.42% 24.47% 9.40% 16.50% 15.22%

SARIMA 21.75% 18.04% 12.45% 13.61% 17.60% 19.59% 16.20% 12.58% 15.08% 20.80% 7.23% 13.95% 15.74%
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model.  Using the long-term forecast and the short term forecast, the ARIMA model provides 

better extended forecast values than simple exponential smoothing.   

 
Table 10 One Month Ahead Forecast Accuracy and Average 

If forecasting is included in the normal planning procedures, the best scenario is to rerun 

all of the models each forecasting attempt and to compare the goodness of fit criteria, focusing 

on the MSE, and using whichever model is the most accurate.  Unfortunately, the same model 

may not necessarily be applied each time; however, repeated analysis shows that the seasonal 

exponential smoothing model is consistently the top model of those examined.  Given the 

validation, seasonal exponential smoothing was not be the first model selected, but the analyses 

show it to be a very good model still.  The other models all rotated positions since each model 

has strengths and weaknesses in their prediction abilities.    

Real Pallet Scenario 

Analysis was conducted by developing and running scenarios using TACCSAS.  Initially, 

it is most important to run the system and observe how similar the results are when using the real 

Inter SES ARIMA IMA SARIMA
69 obs 23.45% 10.15% 6.42% 6.42% 10.16%
70 obs 3.86% 20.73% 12.88% 18.89% 19.66%
71 obs 1.82% 13.22% 7.56% 13.02% 13.04%
72 obs 8.77% 11.96% 11.37% 12.95% 11.57%
73 obs 1.76% 1.42% 1.46% 2.12% 0.67%
74 obs 5.37% 22.99% 6.40% 9.05% 12.84%
75 obs 13.80% 20.41% 14.31% 16.42% 20.96%
76 obs 1.63% 7.07% 2.52% 2.51% 4.20%
77 obs 14.69% 17.18% 15.71% 17.43% 17.75%
78 obs 37.97% 35.27% 40.05% 38.61% 35.18%
79 obs 1.24% 2.55% 2.00% 5.16% 0.99%
80 obs 12.01% 29.39% 14.02% 16.50% 13.95%

Avg 10.53% 16.03% 11.22% 13.26% 13.42%
Max 37.97% 35.27% 40.05% 38.61% 35.18%
Min 1.24% 1.42% 1.46% 2.12% 0.67%
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pallet data with the real airlift schedule and the cargo loading algorithm compared to the actual 

statistics collected from that month’s GATES data.  This provides further system validation and 

shows any initial process improvement by using the cargo algorithm versus the current loading 

methods.  Figure 18 and Figure 19 show the number of stons of cargo and pallets shipped by 

using real data within the simulation and by simulating the pallet data compared to the actual 

shipping values.  The red (actual), green (real data simulation), and the purple (Monte Carlo 

simulation) lines all run very close together.  It also appears, by the position of the blue line (total 

cargo or pallets available), that each month has residual cargo.  Residual cargo must either be 

factored into the next month’s forecast for any additional aircraft purchases or placed on enroute 

channel missions.  The simulation shows that the planners appear to load the aircraft well each 

month.   

 
Figure 18  Actual Schedule Simulation (Cargo) 

 
 

 
Figure 19 Actual Schedule Simulation (Pallets) 

Readers may notice the large deviation of the real data simulation from the actual values 

on the data point “Feb-11.”  This occurs because the simulation uses a higher minimum capacity 

of 75% on the amount of tonnage or the number of pallets on the aircraft before departure is 

allowed.  The constraint is put into place due to current plans allowing planes to depart once they 

are 50% full (Figure 1); and actual data shows that planes depart with even lower utilization 
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rates.  Increasing utilization rates reduces the number of aircraft necessary.  For the mentioned 

data point, there were many days at the end of the month where these constraints were not met 

and airlift not scheduled, causing pallets to be left in inventory at the end of the simulation.  If 

aircraft can take off with lower capacities, then more partially full flights are scheduled.  The 

problem is determining the best percentage capacity to use.   

 The tonnage and the pallet values that are used as the maximum carrying capacities are 

planning values.  The aircraft can carry more and in many cases, the additional ability is used.  

The tonnage utilization from a full year of actual data is between 40% and 125%.  The aircraft 

are not capable of carrying more pallets than the set number of pallet positions built into an 

airframe.   

 After comparing the actual statistics and the simulation results, we can refer to the 

original schedule and determine where to make improvements.  For “Oct-10,” 1,594 pallets 

needed to be shipped totaling 3,279.44 tons.  The remaining pallets are either rolled over to the 

next month or transferred on enroute missions.  Nearly all of the pallets can be airlifted with the 

“extra” CRAF.  This means that the additional CRAF can be used if placed elsewhere in the 

schedule.  When comparing the actual schedule to the schedule the simulation produces, on the 

few days where more than two CRAF are scheduled (instances of 3, 4, and 5 CRAF on a single 

day), the additional CRAF are usually cancelled.  There are flights scheduled for every day in the 

actual schedule, and it would be an easy adjustment to ensure that there is an even distribution of 

departures across the month.  This would lead to less cancellations and actually using the aircraft 

that are purchased.   
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Redistributed Scenario 

 To analyze this conjecture, a simulation is run with a schedule consisting of the 

same aircraft, with the same APOD, scheduled on different days.  Figure 20 and Figure 21 show 

that there are no significant differences if the same flights are rescheduled.  However, Figure 22 

shows that a modified schedule allows the same pallets to ship the same month while 

consistently using less aircraft than the original schedule.  After reviewing this study it is 

apparent that cancellations are easy to generate, but the important consideration is how to better 

schedule the flights to better accomplish the mission. 
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Figure 20  Redistributed Simulation (Cargo) 

 

 
Figure 21 Redistributed Simulation (Pallets) 

 
Figure 22  Redistributed Simulation (Missions Flown) 

 

Times Series Model Scenarios 

 The forecasted weight and the cargo loading algorithm can be used to simulate what the 

potential schedule and airlift capabilities would look like for the upcoming months.  As more 

data is included into the forecasting model, in most cases, a better fitting model is developed and 

the predictions improve.  In repeated testing, some model instances show greater than 99% 

accuracy.  The simulation shows planners how many aircraft they need to move a predicted 

number of pallets and a predicted number of tons.   

The predicted pallet numbers are derived from the forecasted cargo weight.  The mean of 

a previous month’s pallet weights is found and the forecasted tons are divided by the mean pallet 
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weight to get the forecasted number of pallets.  The pallet weight is then simulated as a random 

value using the normal distribution.  The average weight of the simulated pallets is then very 

close to the actual pallet weight, providing additional validation to the simulation construction.  

Even if the forecasted value is lower, planners are still aware of how all of the predicted pallets 

are moved in the simulation.  For example if it took about 33 aircraft to airlift over 3,000 tons, 

then it would it would be fair to say they would need an additional 16 aircraft to move an extra 

1,500 tons.   

The forecasted tonnage from the three previously identified models are used in the 

simulation to simulate how the potential pallet numbers and weights can be distributed amongst a 

predetermined airlift schedule with specified aircraft already assigned to days of the month. The 

simulation is replicated and the run results averaged.  Figure 23 shows the forecasted cargo 

demand from the three models in relation to the actual cargo shipped during FY11.  The 

forecasts appear to run across the minimum, maximum, and average actual values.  Since the 

forecasts are so close to the actual shipping values, the results of the simulation show very 

similar charts across amount of cargo shipped and the number of pallets shipped.  Figure 24 is a 

comparison of how many missions are flown in each month.  It is expected that the two lower 

forecasts will require fewer missions, but the higher forecast (Intervention Model) also flies 

fewer missions to ship a slightly greater number of cargo pallets.  
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Figure 23  Forecasted Cargo Demand 

 
 

 
Figure 24 Forecast Simulation (Mission Flown) 

Table 11 shows the minimum number of missions flown by each type of aircraft 

identified to transport the total tonnage of 3,241.86 stons as well as the average number of pallets 

flown on each type of aircraft for “Oct-11.”  An important value in Table 11 is the total number 

of aircraft necessary to accommodate the forecasted number of tons or pallets.  In this case, the 

intervention model forecasts that only 52 aircraft total or 36 CRAF are needed.  When validated 

against the actual GATES data, the intervention model forecasted higher than the actual tonnage, 

but the simulation shows that the current schedule is capable of airlifting the actual number of 

pallets (1,594 pallets) and the full tonnage (3,279.44 tons) while still cancelling 13 CRAF.  

Although the forecast is higher than the actual value, CRAF can be cancelled and 42% of the 

cost saved.   
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Table 11 Intervention Model Simulation - Pallet Statistics “Oct-11” 

Full Schedule Scenario 

 A simulation provides a great deal of flexibility in its modeling capabilities.  It may be 

useful for planners to know how many aircraft are necessary or how many additional aircraft are 

needed to airlift every pallet if enroute missions are no longer available.  The original schedules 

show that not enough aircraft are scheduled for flights to OAKN, leaving pallets in port.  The 

schedules also show that CRAF are primarily scheduled for the first three weeks and not evenly 

scheduled through the end of the month.  Table 12 shows the modified daily airlift schedule for 

each month.   

# missions Tons/Msn Tons Utilization Pallets/Msn
Pallet 

Utilization
B74720 21.43 70.11 62.60% 32.74 99.20%
B74740 3.30 68.13 54.95% 32.23 97.65%

MD011F 8.39 70.69 83.16% 34.50 98.57%
B74710 2.71 67.61 86.68% 30.44 92.26%
C005M 1.00 60.27 98.80% 27.87 77.43%
C005B 5.15 59.65 97.78% 28.42 78.95%
C017A 9.47 39.11 86.91% 18.52 102.89%

Total Total Average Total Average
Total/Avg 51.46 3241.86 75.43% 1529.70 96.86%

2.77 daysAvg  Pa lle t Ho ld  T ime
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Table 12 Full Daily Schedule 

Figure 25 and Figure 26 show that it is possible to move every pallet available.  February 

is still the outlier due to the capacity constraint.  Figure 27 shows that a small increase in the 

number of monthly missions is enough to accommodate the pallet inventory.  It is equal to 

approximately an additional 15 flights per month or 8 CRAF.   

Aircraft Type APOD
C017A Organic OAKN
C005A Organic OAKN
C005B Organic OAKN
B74710 CRAF OAIX
B74720 CRAF OAIX
B74740 CRAF OAIX

MD011F CRAF OAIX
B74710 CRAF OAKB
B74720 CRAF OAKB
B74740 CRAF OAKB

MD011F CRAF OAKB
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Figure 25 Full Simulation (Cargo) 

 

 
Figure 26 Full Simulation (Pallets) 

 
Figure 27  Full Simulation (Missions Flown) 

 

All Organic Scenario 

 Planners can attempt to replicate all of their airlift efforts with just organic aircraft.  If 

there is ever a situation where APODs are too hostile for CRAF aircraft, it might be useful to 

know how many missions organic aircraft would have to fly in order to fill the gaps.  To run this 

scenario, each CRAF flight on the schedule is replaced with a similarly sized organic aircraft.  

Although C-5s are capable of carrying a great deal of cargo, the planning parameters for stons 

carried are quite low causing them to reach their maximum stons capacity before reaching their 

pallet capacity.  Figure 30 shows that the same number of missions are used to move less cargo 
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as shown in Figure 28 and Figure 29.  More organic aircraft would be required to perform the 

same amount of work, which may not be feasible due to the size of the organic aircraft inventory. 

 
Figure 28 Organic Simulation (Cargo) 

 

 
Figure 29 Organic Simulation (Pallets) 

 
Figure 30  Organic Simulation (Missions Flown) 

Results 

Table 13 is a summary table of the scenario airlift mission number results compared to 

the actual data.  With exception to the Full Schedule and Organic scenarios, each simulation 

scenario uses less CRAF aircraft to airlift the same number of pallets or cargo stons.   
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Table 13 Scenario Summary - Total Airlift Missions 

Table 15 is a summary of the monthly cost of schedules associated with each scenario.  

The number of CRAF aircraft necessary for each scenario is shown along with the number of 

cancellations possible.  Cost savings is calculated as previously discussed to include the sunk 

cost to schedule.  If the number of CRAF flights scheduled is less than the actual number, 

cancellations are calculated.  Simulation of each of the scenarios shows improvements can be 

made in nearly every month to achieve a more cost effective schedule.  The redistributed 

schedule shows the most number of cancellations and therefore the greatest savings. 

B74710 14 14.207 10 7.0936 6.9211 0
B74720 292 351.44 268.52 272.23 274.21 0
B74730 3 0 3 3.1 3 0
B74740 80 174 73.468 74.16 68.475 0
MD011F 95 42.118 89.5 91.624 90.95 0
C005A 21 9.9 14 17.249 13.976 272
C005B 60 69.102 46.745 50.049 44.857 156.01
C005M 14 0 11.229 13.142 12.451 83.081
C017A 176 276.93 143.12 158.66 148.39 153.54
KC010A 1 0 1 1 1 1

Total 756 937.7 660.58 688.31 664.23 665.64

Monte Carlo

448.21

240.1

Redistributed Organic

443.55

220.68

CR
AF

O
rg

an
ic

Full 

581.77

355.93

0

665.64

484

272

444.49

216.09

Actual Real Pallet
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Table 14  Scenario Comparison of Cost Savings 

Summary 

 Continuous one-step ahead forecasting with the five models selected shows there are 

various models capable of providing regular accurate forecasts.  Having an actual forecasting 

Actual GATES Full Schedule Sim Real Pallet Sim Monte Carlo Sim Redistributed
CRAF Flights 49 40 30 29 34

Cancellations 8 18 19 15
Cost of Schedule 22,540,000.00$    19,295,431.75$    15,646,000.00$    15,398,316.67$    17,058,550.79$    

CRAF Flights 41 44 32 33 33
Cancellations 0 9 8 8

Cost of Schedule 18,860,000.00$    20,240,000.00$    15,620,000.00$    15,980,000.00$    15,755,019.84$    
CRAF Flights 42 55 41 41 40

Cancellations 0 0 0 2
Cost of Schedule 19,320,000.00$    25,354,360.32$    18,884,022.22$    18,961,747.62$    18,372,774.60$    

CRAF Flights 36 51 36 36 36
Cancellations 0 0 0 0

Cost of Schedule 16,560,000.00$    23,460,000.00$    16,560,000.00$    16,560,000.00$    16,780,197.62$    
CRAF Flights 43 49 42 44 40

Cancellations 0 1 0 3
Cost of Schedule 19,780,000.00$    22,540,000.00$    19,296,511.90$    20,420,769.05$    18,501,579.37$    

CRAF Flights 43 49 41 42 41
Cancellations 0 1 1 1

Cost of Schedule 19,780,000.00$    22,562,032.54$    19,119,065.08$    19,229,227.78$    19,097,707.94$    
CRAF Flights 34 45 36 35 36

Cancellations 0 0 0 0
Cost of Schedule 15,640,000.00$    20,484,073.81$    16,468,638.89$    16,120,207.14$    16,464,659.52$    

CRAF Flights 37 48 33 33 35
Cancellations 0 3 4 2

Cost of Schedule 17,020,000.00$    22,013,099.21$    15,691,107.14$    15,395,561.90$    16,125,163.49$    
CRAF Flights 45 51 43 45 41

Cancellations 0 1 0 4
Cost of Schedule 20,700,000.00$    23,460,000.00$    19,908,896.03$    20,789,170.63$    19,235,010.32$    

CRAF Flights 33 42 33 33 32
Cancellations 0 0 0 1

Cost of Schedule 15,180,000.00$    19,324,600.00$    15,053,773.81$    15,084,440.48$    14,820,000.00$    
CRAF Flights 35 48 34 34 35

Cancellations 0 1 0 0
Cost of Schedule 16,100,000.00$    22,080,000.00$    15,740,000.00$    15,786,159.52$    16,100,000.00$    

CRAF Flights 46 54 43 43 42
Cancellations 0 2 3 3

Cost of Schedule 21,160,000.00$    24,840,000.00$    20,045,860.32$    19,995,411.11$    19,624,600.00$    
Total Cancellations 8 36 35 39

Total Cost 222,640,000.00$  265,653,597.62$  208,033,875.40$  209,721,011.90$  207,935,263.49$  
Total Savings (43,013,597.62)$  14,606,124.60$    12,918,988.10$    14,704,736.51$    

Nov-10
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ability is substantial in terms of reserving CRAF.  Rather than providing weak forecasts and 

under-committing on the “fixed buy,” planners can provide much greater commitment and 

incentive to the CRAF participants and the short term buy.  Planners may reduce the number of 

CRAF they over-purchase by applying the forecast to the simulation.  The simulation easily 

displays how to move the forecasted pallets with the least number of aircraft possible, allowing 

schedulers to examine any shortcomings.  With just a few examples, it is easy to show that the 

simulation can provide different options by changing a few simple parameters.  The take away 

from the simulation is that there is money to be saved in the current scheduling whether it is a 

matter of reducing the number of CRAF performing these channel missions or reducing the 

number of CRAF flying enroute missions.  It is feasible to conduct a full organic schedule, 

especially if wartime ACL parameters are being used, but not necessarily preferred.    
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V. Conclusion 

This research builds upon the foundation for a potential forecasting tool and a cargo 

loading simulation.  Time series forecasting provides an accurate method for predicting cargo 

demand and while a “best” model may not be consistent with every new forecast generated, the 

forecasts are still quite accurate.  The goal of continued forecasting research is to determine if 

advanced time series models can be applied to generate more accurate forecasts.  The 

development of new models leads to the additional question of whether or not forecasts and 

simulation can lead to accurate airlift schedules with the objective to maximize airlifted cargo 

tons.  The suggested models, the capabilities, the potential impacts, and areas for improvement or 

future investigation are presented below.       

Results 

 This research provides a brief overview of the current airlift results and continues with a 

detailed examination of how and where improvements can be made.  Two past research projects 

provide a strong foundation for thesis (DeYoung, 2012; Lindstrom, 2012).  This research focuses 

on incorporating mathematical models into a long standing planning process, how to apply the 

models for reliable results, and how to generate an increasingly accurate outlook from 12 months 

out to 1 month out.  The techniques utilized in this process, time series forecasting, Monte Carlo 

simulation, and heuristic optimization, each offer individual benefits towards increasing value 

and efficiency. 

 Forecasting models are constructed having high R2 values and strong goodness-of-fit 

criteria to create accurate forecasts for short term and long-term cargo demand.  The models are 

validated by using data splitting.  The MSEs are compared amongst multiple models through 

monthly forecast iterations for a full year to observe how the models handled new data and 
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reacted to the changes.  This research demonstrates that forecasting can be a very useful tool and 

can easily fit a cargo data set.  There are a variety of models applied to the data set with good 

results, and each can be updated regularly as new data are received to improve model predictive 

capabilities.   

 The Monte Carlo simulation produces very good estimates of cargo pallet weight by 

using simple distributions and good samples of pallet arrivals and destinations with discrete 

probability distributions.  The cargo loading algorithm effectively and efficiently loads aircraft 

with pallets, paired by destinations, and shows cost savings and areas for modification.  The 

algorithm is validated through data splitting and the results showed the same cargo movement 

performance can be achieved with far less aircraft and large savings.  The simulation is easily 

used to generate potential schedules and show related statistics allowing planners to make 

changes or improvements or to plan ahead.    

Past research emphasized the need for forecasting airlift sustainment cargo demand for 

the AORs (DeYoung, 2012) which is why Afghanistan is the focus.  While this is the main basis 

of the research, simulations show there is room for improvement in the overall scheduling of 

airlift, the loading of aircraft, and the understanding of cancellation fees and port hold time.  If 

these issues exist outside of planning for the AOR, then it would be beneficial to explore 

applications to other aerial ports as well.   

Research Conclusion 

 The model forecast charts in Appendix C show that with time, forecasts can sometimes 

become less accurate.  A use of these charts is whether or not the forecasts are an improvement 

over the current moving average model used.  The improvement shown provides a direct benefit 

to the DoD’s incentive relationship with its CRAF partners.  A more accurate projection of 
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CRAF business one year out can confidently increase the size of the “fixed buy” and reduce the 

size of “expansion buys”  The methods that are used in this research are easily applied and the 

goodness-of-fit is directly dependent on how planners choose to filter the input data.   

This research found no past research that applies simulation to such a broad planning 

effort.  Most simulation models or products appear to be applied to the physical loading of the 

aircraft or for cargo routing/deliveries.  The benefit of simulation is that it can be tailored to the 

need and its performance can be validated with real data sets.  The forecasts and the simulation 

focus on improved planning overall and show potential financial impacts or savings from the 

airlift schedule used.  The focus of the simulation is improving the planning process to reduce 

costs.  This includes the cost benefit of cancelling previously scheduled missions as well.  The 

main conclusion derived from analyzing data from FY2011 is that scheduling of airlift needs 

improvement and depending on how the application of these methods continue, there are 

potential cost savings in reducing the number of CRAF flying each month and cancelling 

unnecessary CRAF.  

 A direct result of the research is a modeling tool that incorporates the techniques from 

Chapters 3 and 4.  This Excel model forecasts cargo demand using multiple models, uses the 

forecasted demand to simulate a schedule of aircraft for that month based on an input schedule or 

a sample schedule, and provides results of the simulation showing areas of improvement and 

potential cost impacts or savings.  Users can include aircraft of their choosing, schedule aircraft 

as they please, use multiple statistical distributions to simulate pallet weights and review how 

each individual aircraft is loaded.  This tool can improve USTRANSCOMs current planning 

capabilities.     
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Recommendations 

 USTRANSCOM planners should begin to use forecasting techniques in their airlift 

planning.  Multiple models can be applied repeatedly on a monthly basis while injecting new 

data and comparing it with actual cargo data.  It is also recommended that weekly data be used 

and tested for a six week forecast to incorporate last minute changes.  Multiple models should be 

applied due to the nature of the model types and the real data set, but this research shows that 

using these models is beneficial.  Side-by-side comparisons for a time period provide planners an 

evaluation period as well as a learning period.  Assuming TACCSAS performs well, it is an 

adaptive system ready to incorporate new data and simulate real schedules and efficiencies based 

off of the forecasted demand.  It is recommended that TACCSAS be used as soon as possible to 

evaluate current schedules and for future planning.     

Future Research 

 Due to the difficulty in retrieving BOG data as well as the observation that BOG 

dependent forecasting models did not provide improved forecasts, future models should be 

developed using just cargo demand.  Using the one time series will also simplify future model 

development.  In addition to using a single input, past research (DeYoung, 2012) shows that 

weekly demand values can be used to generate accurate forecasts as well.  Actual application 

may require a combination of both monthly and weekly forecasts in order to enhance current 

planning efforts.      

The simulation can easily be applied to other APODs and other APOEs to determine if 

modifications can be made to their airlift scheduling.  For example, all Dover AFB data can be 

replaced with that from Travis AFB to determine if savings are available in PACAF missions or 

if schedules can be performed in a manner to provide better coverage and more airlift.   
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While there are a number of advanced forecasting techniques, artificial neural networks 

(ANN) in particular are quite accurate and are a black box system that can “learn” nearly any 

data set.  It may be worth the time and the effort to apply ANNs to the time series data to 

potentially derive a more accurate forecast.  Additional software or add-ins are necessary to 

perform the computations, but many of these solutions are readily available and fairly straight 

forward in their use (with some understanding of the topic).  A brief experimentation is 

performed with the same set of time series cargo data and time-delay neural networks to observe 

the performance.  Recurrent neural networks are also applied to the data series.  The steps and 

the results are found in Appendix F.
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Appendices 

Appendix A 

The time series of the monthly total of the cargo weights can be reviewed in the table 

below.  Cargo numbers are pulled from the GATES database and manually sorted and calculated.  

Boots of the Ground values are taken from (Belasco, 2011).  For the model development, the last 

estimated value of 98,000 BOG was used for FY2011.   

 

Date Tons of Cargo BOG Date Tons of Cargo BOG
Jan-05 626.24 18,700 Oct-08 2,083.65         33,000
Feb-05 355.21 20,300 Nov-08 1,796.79         33,000
Mar-05 1098.62 20,900 Dec-08 1,848.90         32,500
Apr-05 1321.85 19,500 Jan-09 1,709.50         32,800
May-05 1868.07 20,000 Feb-09 2,395.76         35,900
Jun-05 1765.68 19,200 Mar-09 2,814.97         38,350
Jul-05 1564.97 21,100 Apr-09 2,710.91         39,000

Aug-05 1464.06 17,400 May-09 2,397.15         44,700
Sep-05 1239.89 18,000 Jun-09 2,784.60         55,100
Oct-05 888.69 17,800 Jul-09 3,240.28         56,500
Nov-05 1141.64 17,400 Aug-09 3,761.82         62,600
Dec-05 965.61 18,500 Sep-09 1,684.92         62,300
Jan-06 968.55 20,300 Oct-09 3,129.91         65,800
Feb-06 1317.77 22,700 Nov-09 3,240.86         67,500
Mar-06 1171.79 20,000 Dec-09 4,015.49         69,000
Apr-06 1246.90 23,300 Jan-10 4,669.42         70,200
May-06 1123.86 21,800 Feb-10 3,820.45         74,600
Jun-06 1430.04 22,300 Mar-10 4,551.66         85,000
Jul-06 1166.78 20,800 Apr-10 5,605.41         87,600

Aug-06 1013.93 19,700 May-10 5,152.41         89,700
Sep-06 970.40 20,400 Jun-10 4,962.08         91,775
Oct-06 1340.10 19,800 Jul-10 4,393.06         95,925
Nov-06 972.08 20,500 Aug-10 3,762.09         95,920
Dec-06 664.56 21,800 Sep-10 2,974.05         98,000
Jan-07 701.91 26,000 Oct-10 3,300.60         
Feb-07 728.49 24,800 Nov-10 4,149.92         
Mar-07 2897.11 24,400 Dec-10 4,536.60         
Apr-07 1742.49 23,900 Jan-11 5,069.22         
May-07 1111.17 26,400 Feb-11 4,852.68         
Jun-07 900.47 23,800 Mar-11 4,529.13         
Jul-07 1135.81 24,000 Apr-11 4,037.11         

Aug-07 1072.69 24,000 May-11 4,370.84         
Sep-07 873.20 24,500 Jun-11 5,318.32         
Oct-07 840.92 24,400 Jul-11 3,691.94         
Nov-07 550.83 24,800 Aug-11 4,014.77         
Dec-07 744.61 24,600 Sep-11 4,941.08         
Jan-08 756.80 27,000
Feb-08 981.68 28,000
Mar-08 1166.90 28,800
Apr-08 920.68 33,100
May-08 1028.56 35,600
Jun-08 1539.14 34,000
Jul-08 1469.30 33,700

Aug-08 1623.82 34,200
Sep-08 1611.04 33,500
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Appendix B 

Monthly Afghanistan Cargo Demand Models 

The following graphs show the monthly historical cargo time series (black dots) with the 

fitted forecasting model (red line).  A 95% confidence interval is provided (blue lines) around the 

forecasted value.   

Figure 31 Monthly Forecast Model Graphs 

 

Linear Regression 

 

 

Intervention Model 
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Simple Exponential Smoothing 

 

 

Double (Brown) Exponential Smoothing 

 

 

Seasonal Exponential Smoothing 
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ARIMA(1,1,1) 

 

 

ARI(1,1) 

 

 

IMA(1,1) 
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SARIMA(0,1,1)(1,0,1)12 

 

 

Transfer Function – Cargo (1,0,0)/BOG(0,1,1) 

 

 

Transfer Function – Cargo (0,0,1)/BOG(0,1,1) 
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Appendix C 

Top 5 Models Iterative Comparison 

 An iterative comparison performed with the five best models is shown in the figures 

below.  An initial 12 month forecast was produced by each model and the overall accuracies are 

determined.  A new data point was then included into the data set and new forecasts are 

generated for the remaining months.  The purpose of this is to find out if these models are only 

good in an instance or if forecasting (and these models specifically) can be regularly applied to 

this type of data set.  This process proved that these models are capable of accommodating 

change and continually predicting cargo tonnage on a yearly, quarterly, or monthly basis.   
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Table 15 All Model Residual and Percentage Deviations 

 

69 obs 70 obs 71 obs 72 obs 73 obs 74 obs 75 obs 76 obs 77 obs 78 obs 79 obs 80 obs
12 Month 11 Month 10 Month 9 Month 8 Month 7 Month 6 Month 5 Month 4 Month 3 Month 2 Month 1 Month

Month 70 -774.01
Month 71 -390.09 160.14
Month 72 -326.19 158.30 82.72
Month 73 -13.21 498.51 490.46 444.50
Month 74 -76.91 186.67 214.35 196.75 -85.54
Month 75 -511.58 -184.08 -137.62 -141.49 -291.32 -243.26
Month 76 -1195.10 -699.47 -643.18 -640.41 -729.19 -709.98 -557.09
Month 77 -671.52 -377.32 -315.92 -309.94 -370.57 -364.63 -285.80 71.44
Month 78 335.37 564.43 628.47 636.01 588.35 588.20 633.36 822.11 781.51
Month 79 -1171.06 -1064.78 -999.37 -991.08 -1032.76 -1035.71 -1005.86 -893.69 -909.55 -1401.93
Month 80 -719.24 -743.36 -677.25 -668.59 -707.51 -711.75 -688.86 -611.50 -616.04 -847.68 -49.90
Month 81 517.51 182.25 248.72 257.56 219.90 215.08 234.81 296.34 296.98 175.03 554.62 593.26
Month 70 -335.09
Month 71 629.62 860.42
Month 72 916.64 1147.44 599.62
Month 73 1316.37 1547.54 999.18 606.05
Month 74 1068.84 1300.01 751.65 358.52 -68.77
Month 75 48.62 279.79 -268.57 -661.70 -1088.99 -1041.17
Month 76 -424.46 -193.30 -741.65 -1134.78 -1562.08 -1514.26 -823.88
Month 77 86.19 317.36 -231.00 -624.13 -1051.43 -1003.61 -313.23 308.84
Month 78 917.24 1148.41 600.05 206.92 -220.37 -172.56 517.82 1139.90 913.70
Month 79 -657.31 -426.15 -974.50 -1367.63 -1794.93 -1747.11 -1056.73 -434.66 -660.86 -1302.06
Month 80 -281.05 -49.88 -598.24 -991.37 -1418.67 -1370.85 -680.47 -58.40 -284.60 -925.80 -102.54
Month 81 1208.38 1439.55 891.19 498.06 70.77 118.59 808.97 1431.04 1204.84 563.64 1386.89 1452.17
Month 70 -211.79
Month 71 370.11 534.57
Month 72 606.06 740.86 342.76
Month 73 1043.30 1160.74 829.52 576.18
Month 74 757.64 865.54 566.17 356.90 -70.70
Month 75 377.42 480.50 195.33 7.22 -342.51 -289.95
Month 76 -165.34 -64.36 -344.18 -522.73 -832.50 -789.59 -577.65
Month 77 120.44 220.87 -58.08 -232.92 -523.02 -485.14 -313.23 110.35
Month 78 1021.31 1122.05 841.73 667.62 386.34 421.69 573.47 916.83 835.59
Month 79 -651.05 -549.53 -832.35 -1007.21 -1285.48 -1251.31 -1109.24 -806.88 -872.74 -1478.45
Month 80 -373.90 -271.34 -557.24 -733.61 -1011.97 -978.24 -840.43 -558.26 -616.14 -1103.81 -80.33
Month 81 506.86 610.61 321.35 143.07 -137.04 -103.33 33.08 306.10 252.22 -175.91 636.24 692.50
Month 70 -211.79
Month 71 370.11 783.80
Month 72 606.06 1131.05 590.67
Month 73 1043.30 1624.24 1076.29 656.26
Month 74 757.64 1368.27 812.75 386.77 -102.95
Month 75 377.42 1005.29 442.19 10.27 -486.27 -409.78
Month 76 -165.34 473.84 -96.82 -534.68 -1038.04 -960.50 -662.71
Month 77 120.44 768.14 189.90 -253.90 -764.07 -685.49 -383.70 109.72
Month 78 1021.31 1676.19 1090.38 640.63 123.65 203.28 509.07 1008.99 927.04
Month 79 -651.05 10.39 -583.00 -1038.69 -1562.49 -1481.81 -1172.02 -665.61 -748.61 -1425.30
Month 80 -373.90 293.79 -307.18 -768.80 -1299.42 -1217.69 -903.90 -390.99 -475.06 -1160.45 -207.32
Month 81 506.86 1180.66 572.13 104.56 -432.88 -350.10 -32.31 487.09 401.97 -292.13 673.36 815.47
Month 70 -335.39
Month 71 59.24 815.86
Month 72 596.49 1138.31 591.76
Month 73 1272.19 1596.19 1046.59 586.53
Month 74 1191.59 1343.61 789.54 363.36 -32.72
Month 75 997.21 684.94 137.97 -229.82 -605.16 -581.62
Month 76 627.94 179.32 -373.00 -831.38 -1271.75 -1250.24 -846.32
Month 77 1078.29 570.42 10.00 -416.92 -847.76 -824.93 -435.59 183.49
Month 78 2136.59 1443.48 880.07 461.39 41.55 65.15 472.94 1079.98 944.21
Month 79 615.51 -181.73 -751.06 -1174.03 -1585.71 -1561.07 -1144.70 -556.59 -694.22 -1298.98
Month 80 1038.39 142.99 -432.29 -845.83 -1240.50 -1214.46 -786.79 -229.38 -368.83 -939.44 -39.64
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All Model Residuals 

 

All Model Percentage Deviations 

69 obs 70 obs 71 obs 72 obs 73 obs 74 obs 75 obs 76 obs 77 obs 78 obs 79 obs 80 obs
12 Month 11 Month 10 Month 9 Month 8 Month 7 Month 6 Month 5 Month 4 Month 3 Month 2 Month 1 Month

Month 70 23.45%
Month 71 9.40% 3.86%
Month 72 7.19% 3.49% 1.82%
Month 73 0.26% 9.83% 9.68% 8.77%
Month 74 1.58% 3.85% 4.42% 4.05% 1.76%
Month 75 11.30% 4.06% 3.04% 3.12% 6.43% 5.37%
Month 76 29.60% 17.33% 15.93% 15.86% 18.06% 17.59% 13.80%
Month 77 15.36% 8.63% 7.23% 7.09% 8.48% 8.34% 6.54% 1.63%
Month 78 6.31% 10.61% 11.82% 11.96% 11.06% 11.06% 11.91% 15.46% 14.69%
Month 79 31.72% 28.84% 27.07% 26.84% 27.97% 28.05% 27.24% 24.21% 24.64% 37.97%
Month 80 17.91% 18.52% 16.87% 16.65% 17.62% 17.73% 17.16% 15.23% 15.34% 21.11% 1.24%
Month 81 10.47% 3.69% 5.03% 5.21% 4.45% 4.35% 4.75% 6.00% 6.01% 3.54% 11.22% 12.01%
Month 70 10.15%
Month 71 15.17% 20.73%
Month 72 20.21% 25.29% 13.22%
Month 73 25.97% 30.53% 19.71% 11.96%
Month 74 22.03% 26.79% 15.49% 7.39% 1.42%
Month 75 1.07% 6.18% 5.93% 14.61% 24.04% 22.99%
Month 76 10.51% 4.79% 18.37% 28.11% 38.69% 37.51% 20.41%
Month 77 1.97% 7.26% 5.29% 14.28% 24.06% 22.96% 7.17% 7.07%
Month 78 17.25% 21.59% 11.28% 3.89% 4.14% 3.24% 9.74% 21.43% 17.18%
Month 79 17.80% 11.54% 26.40% 37.04% 48.62% 47.32% 28.62% 11.77% 17.90% 35.27%
Month 80 7.00% 1.24% 14.90% 24.69% 35.34% 34.15% 16.95% 1.45% 7.09% 23.06% 2.55%
Month 81 24.46% 29.13% 18.04% 10.08% 1.43% 2.40% 16.37% 28.96% 24.38% 11.41% 28.07% 29.39%
Month 70 6.42%
Month 71 8.92% 12.88%
Month 72 13.36% 16.33% 7.56%
Month 73 20.58% 22.90% 16.36% 11.37%
Month 74 15.61% 17.84% 11.67% 7.35% 1.46%
Month 75 8.33% 10.61% 4.31% 0.16% 7.56% 6.40%
Month 76 4.10% 1.59% 8.53% 12.95% 20.62% 19.56% 14.31%
Month 77 2.76% 5.05% 1.33% 5.33% 11.97% 11.10% 7.17% 2.52%
Month 78 19.20% 21.10% 15.83% 12.55% 7.26% 7.93% 10.78% 17.24% 15.71%
Month 79 17.63% 14.88% 22.55% 27.28% 34.82% 33.89% 30.04% 21.86% 23.64% 40.05%
Month 80 9.31% 6.76% 13.88% 18.27% 25.21% 24.37% 20.93% 13.91% 15.35% 27.49% 2.00%
Month 81 10.26% 12.36% 6.50% 2.90% 2.77% 2.09% 0.67% 6.20% 5.10% 3.56% 12.88% 14.02%
Month 70 6.42%
Month 71 8.92% 18.89%
Month 72 13.36% 24.93% 13.02%
Month 73 20.58% 32.04% 21.23% 12.95%
Month 74 15.61% 28.20% 16.75% 7.97% 2.12%
Month 75 8.33% 22.20% 9.76% 0.23% 10.74% 9.05%
Month 76 4.10% 11.74% 2.40% 13.24% 25.71% 23.79% 16.42%
Month 77 2.76% 17.57% 4.34% 5.81% 17.48% 15.68% 8.78% 2.51%
Month 78 19.20% 31.52% 20.50% 12.05% 2.32% 3.82% 9.57% 18.97% 17.43%
Month 79 17.63% 0.28% 15.79% 28.13% 42.32% 40.14% 31.75% 18.03% 20.28% 38.61%
Month 80 9.31% 7.32% 7.65% 19.15% 32.37% 30.33% 22.51% 9.74% 11.83% 28.90% 5.16%
Month 81 10.26% 23.89% 11.58% 2.12% 8.76% 7.09% 0.65% 9.86% 8.14% 5.91% 13.63% 16.50%
Month 70 10.16%
Month 71 1.43% 19.66%
Month 72 13.15% 25.09% 13.04%
Month 73 25.10% 31.49% 20.65% 11.57%
Month 74 24.56% 27.69% 16.27% 7.49% 0.67%
Month 75 22.02% 15.12% 3.05% 5.07% 13.36% 12.84%
Month 76 15.55% 4.44% 9.24% 20.59% 31.50% 30.97% 20.96%
Month 77 24.67% 13.05% 0.23% 9.54% 19.40% 18.87% 9.97% 4.20%
Month 78 40.17% 27.14% 16.55% 8.68% 0.78% 1.23% 8.89% 20.31% 17.75%
Month 79 16.67% 4.92% 20.34% 31.80% 42.95% 42.28% 31.01% 15.08% 18.80% 35.18%
Month 80 25.86% 3.56% 10.77% 21.07% 30.90% 30.25% 19.60% 5.71% 9.19% 23.40% 0.99%
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Appendix D 

Monte Carlo Simulation Construction 

Chapter 3 discussed the development of the parameters for the Monte Carlo Simulation.  

Below is a small portion of the airlift schedule from October FY2011.  The table below shows 

which aircraft flew to what destination on what day.  This schedule can be used to assign pallets 

to. 

Table 16 Monte Carlo Simulation Construction 

 

 

AirCraft Type Destination Direct/Enroute Day
B74720 CRAF OAIX Direct 1
B74720 CRAF OAIX Direct 2
B74740 CRAF OAIX Direct 3
B74720 CRAF OAIX Direct 3
B74720 CRAF OAIX Direct 3
B74720 CRAF OAIX Direct 4
B74720 CRAF OAIX Direct 4
MD011F CRAF OAIX Direct 4
B74720 CRAF OAKB Direct 5
B74720 CRAF OAKB Direct 5
B74720 CRAF OAIX Direct 5
MD011F CRAF OAIX Direct 5
B74720 CRAF OAIX Direct 6
B74740 CRAF OAIX Direct 7
B74720 CRAF OAIX Direct 7
MD011F CRAF OAIX Direct 8
B74720 CRAF OAIX Direct 9
B74720 CRAF OAIX Direct 9
MD011F CRAF OAIX Direct 10
B74710 CRAF OAKB Direct 10
MD011F CRAF OAIX Direct 10
B74720 CRAF OAIX Direct 10
B74710 CRAF OAIX Direct 10
MD011F CRAF OAIX Direct 11
MD011F CRAF OAIX Direct 11
B74710 CRAF OAKB Direct 12
B74720 CRAF OAIX Direct 12
B74720 CRAF OAIX Direct 13
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The right hand table shows a small portion of the pallets that arrive to Dover AFB, with 

their destination and their arrival date.  The right hand table shows how each pallets’ arrival date 

to Dover AFB is counted, the probability of occurrence is found, and then a discrete probability 

distribution is formed.   

 
 

The table below shows how each pallets’ destination is counted, the probability of 

occurrence is found, and then a discrete probability distribution is formed.    

PLT_GROSS_WT APOD_ICAO ArrivalDate
0.59 OAKN 1
5.01 OAIX 1
2.19 OAIX 1

2.94 OAIX 1
1.51 OAKN 1
1.40 OAKN 1
4.89 OAIX 1
2.50 OAIX 1
2.35 OAKN 1
1.97 OAIX 1
1.09 OAIX 1
1.94 OAIX 1
2.35 OAKB 1
1.64 OAIX 1
2.58 OAIX 1
2.57 OAIX 1
1.16 OAKN 1
2.84 OAIX 1
2.58 OAIX 1
2.23 OAIX 1
1.86 OAIX 1
4.31 OAIX 1
2.46 OAIX 1
2.55 OAKN 1
1.83 OAIX 1
2.16 OAIX 1
2.44 OAIX 1
4.45 OAKN 1

DayCount Day Probability CumProb
72 1 4.52% 0.00%
52 2 3.26% 4.52%
26 3 1.63% 7.78%
32 4 2.01% 9.41%
70 5 4.39% 11.42%
75 6 4.71% 15.81%
89 7 5.58% 20.51%
79 8 4.96% 26.10%
43 9 2.70% 31.05%
28 10 1.76% 33.75%
12 11 0.75% 35.51%
48 12 3.01% 36.26%
53 13 3.32% 39.27%
57 14 3.58% 42.60%
92 15 5.77% 46.17%
44 16 2.76% 51.94%
37 17 2.32% 54.71%
34 18 2.13% 57.03%
53 19 3.32% 59.16%
45 20 2.82% 62.48%
59 21 3.70% 65.31%
47 22 2.95% 69.01%
43 23 2.70% 71.96%
14 24 0.88% 74.65%
39 25 2.45% 75.53%
66 26 4.14% 77.98%
59 27 3.70% 82.12%
48 28 3.01% 85.82%
68 29 4.27% 88.83%
49 30 3.07% 93.10%
61 31 3.83% 96.17%

Destination Direct/Enroute Location # Count Probability CumProb
OAIX Direct 1 1103 69.20% 0.00%
OAKB Direct 2 153 9.60% 69.20%
OAKN Direct 3 338 21.20% 78.80%
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Appendix E 

Decision Support System – Strategic Airlift Simulation Description 

A decision support system is a computer based information system that can be used for 

management, operations, or for planning purposes.  It uses data for processing or for analytical 

purposes to aid the decision maker in his or her decision-making process.  A DSS was 

constructed with a graphical user interface (GUI) so that the sponsor at USTRANSCOM could 

perform the same actions as discussed throughout my research, but without assistance.  The DSS 

requires a working knowledge of the CRAF scheduling program and a walk-through of the DSS.  

Screenshots and brief instructions will be laid out below as a brief tutorial for potential users.   

 

Initial screen when opening TACCSAS 
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Welcome screen when starting TACCSAS 

 

 
Menu appears when selecting “Start” 
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Select “Run Simulation.”  This screen provide seven options for simulation.  The 

simulation choices include the “fixed buy” and the “expansion buy” forecast options.  The 

recommended number of simulation iterations if 100.  Upon opening, defaults will be provided 

within the selection.   



 

82 
 

 

If the user selects a forecast simulation, forecast parameters will appear allowing for a 

variety of schedules to used in the simulation.   
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Select “Edit Aircraft” from Menu.  The user is allowed to change the ACL parameters for 

each type of aircraft.  Users can also add new CRAF or Organic aircraft with capacity levels as 

well 
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Select “Edit Calendar” from Menu.  The user can choose a month and add CRAF or 

Organic flights to the schedule or remove them. 

  

 

Select “View Simulated Pallet Statistics” or “View Real Pallet Statistics” from Menu.  

The user can view a large number of statistics provided for each run of the simulation.  The 

Run #
Avg Port Hold Of 

All Pallets

Avg Port Hold 
For Pallets Not 

Delivered

Pallets Not 
Shipped

Weight Not 
Shipped

Total Weight 
Generated

Total Weight 
Shipped

1 1.96 2.49 1480 3084.38 6558.89 3474.51
2 2.06 2.59 1554 3235.98 6558.89 3322.91
3 1.81 2.31 1537 3200.93 6558.89 3357.96
4 1.90 2.38 1560 3243.84 6558.89 3315.05
5 1.96 2.49 1480 3084.38 6558.89 3474.51
6 1.96 2.48 1492 3111.02 6558.89 3447.87
7 1.96 2.49 1480 3084.38 6558.89 3474.51
8 1.69 2.15 1505 3138.44 6558.89 3420.45
9 1.96 2.49 1480 3084.38 6558.89 3474.51

10 1.42 1.81 1533 3197.97 6558.89 3360.92
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statistics are provided for pallets/tons airlifted and per individual aircraft type.  The next two 

figures are also included in this selection. 

 

 

Run #
CRAF 
Flown

CRAF 
Cancelled

Cost Of 
Schedule

Potential Total 
Cost Cost Savings

1 30 15 15,300,000$       20,700,000$       5,400,000$         
2 30 15 15,300,000$       20,700,000$       5,400,000$         
3 30 15 15,300,000$       20,700,000$       5,400,000$         
4 30 15 15,300,000$       20,700,000$       5,400,000$         
5 30 15 15,300,000$       20,700,000$       5,400,000$         
6 30 15 15,300,000$       20,700,000$       5,400,000$         
7 30 15 15,300,000$       20,700,000$       5,400,000$         
8 30 15 15,300,000$       20,700,000$       5,400,000$         
9 30 15 15,300,000$       20,700,000$       5,400,000$         

10 30 15 15,300,000$       20,700,000$       5,400,000$         

Run # Aircraft ID # of Missions
Tons 

Transfered
Tons Per 
Mission

Tonnage 
Utilization

Pallets Per 
Mission

Pallet 
Utilization

Potential 
Pallet 

Positions

Actual 
Pallets 

Shipped

Total Pallet 
Utilization

Avg Pallet 
Weight

1 B74720 21 2882.24 137.25 1.23 72.67 1.08 1407.00 1526.00 1.08 1.89
2 B74720 21 2882.24 137.25 1.23 72.67 1.08 1407.00 1526.00 1.08 1.89
3 B74720 21 2882.24 137.25 1.23 72.67 1.08 1407.00 1526.00 1.08 1.89
4 B74720 21 2882.24 137.25 1.23 72.67 1.08 1407.00 1526.00 1.08 1.89
5 B74720 21 2882.24 137.25 1.23 72.67 1.08 1407.00 1526.00 1.08 1.89
6 B74720 21 2882.24 137.25 1.23 72.67 1.08 1407.00 1526.00 1.08 1.89
7 B74720 21 2882.24 137.25 1.23 72.67 1.08 1407.00 1526.00 1.08 1.89
8 B74720 21 2882.24 137.25 1.23 72.67 1.08 1407.00 1526.00 1.08 1.89
9 B74720 21 2882.24 137.25 1.23 72.67 1.08 1407.00 1526.00 1.08 1.89
10 B74720 21 2882.24 137.25 1.23 72.67 1.08 1407.00 1526.00 1.08 1.89
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Appendix F 

Contact Information 

If anyone is interested in the code that was used in Excel to perform all of the operations and 

analysis mentioned earlier, please refer to the contact information below.   

Dr. Jeffery Weir 
Jeffery.weir@afit.edu 

 

Taylor Leonard, Capt. (USAF) 
Taylor.Leonard.1@us.af.mil 
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Appendix G  

Story B
oard 

Operational Planning of Channel Airlift 
Missions Usin Forecasted Demand 

-:~A T;T-

Problem Statement 
• Current cargo demand forecasts are inaccurate and result in 

over/under purchasing of Civi l Reserve Air Fleet (CRAF) aircraft 
• No technical method of determining how many CRAF to 

purchase or when to schedule them 
• CRAF Cancellations are not included in planning measures 

Objectives 
Exam ine effect of advanced mathematical modeling on 
operational planning and scheduling of CRAF 

• Apply advanced forecasting techniques to cargo demand 
• Simulate cargo demand to ensure that airlift is being used to 

the DOD's advantage 

--- ... WJU.II).I,II,I.l.)U 

Capt Taylor Leonard 
Advisor: Dr. Jeffery Weir 
Reader: Dr. Raymond Hill 

Department of Operational Sciences {ENS) 
Air Force Institute of Technology 

Faca:bi= ltoll!)•inMillh(a . Jan=31 da)•) 

For ca:b j = 110 Lrolioo Nlllb<r (a . I =QIJ(N) 

Forca:b k =liD Nnhr<i Aimaft T)!lCS{<:<. 8747-:roisooe~pc) 

If rumtanrafi ='CRAF' n!tura11 ai!tr.li !lies 10j ard isa~:il;bleoo ilbm 

lltileTooitoosooairaafi S Mt<TmsAndT...J=~ooAinrafi S Mr<P.!Iids 

Faca:bpolldtn)<lsliwof l>jdar<lgoqtokraliatj 

lmamtT<t!IT<ll!ardTaa:l':lllct 

lfT...Jmooai!tr.li>MnTms<XToti#~ooAinrafi >Mnl'.l!lculbm 

lbm.mileio<m!ai!tr.li 

Forecasting Model Inputs 
Cargo Tonnage forecast from the best fitting model is required 
Model requires an estimated number of pallets for a single month 

per iod 
Number of pallets determined by d iv iding the forecasted cargo tonnage 
by average pallet weight taken from historical data 
Pallet weights are t hen simulated by normal distri bution with 
predetermined mean and variance from historical data 
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